Effects of SARS-CoV-2 and vaccination on male fertility – a review

Marika Freus, Ignacy Frulenko, Agnieszka Kolasa


The emergence of the second severe acute respiratory syndrome coronavirus (SARS-CoV-2) has resulted in a global pandemic declared by the World Health Organization in 2020. Numerous studies have demonstrated that males are more susceptible to SARS-CoV-2 infection, and recent evidence suggests that the presence of the angiotensin-converting enzyme 2 (ACE2) receptor in male gonads may render them particularly vulnerable to the virus. Consequently, it has become imperative to ascertain the potential impact of SARS-CoV-2 infection and the vaccines on male fertility. This article provides a comprehensive analysis of the literature concerning the incidence of morphological and histological changes in the testes, hormonal changes, and semen parameters resulting from SARS-CoV-2 infection, as well as the impact of vaccinations on sperm.


COVID-19; male infertility; vaccination; SARS-CoV-2

Full Text:



Khalili MA, Leisegang K, Majzoub A, Finelli R, Panner Selvam MK, Henkel R, et al. Male fertility and the COVID-19 pandemic: systematic review of the literature. World J Mens Health 2020;38(4):506-20.

Omolaoye TS, Adeniji AA, Cardona Maya WD, du Plessis SS. SARS-CoV-2 (Covid-19) and male fertility: Where are we? Reprod Toxicol 2021;99:65-70.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14(8):523-34.

Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020;9(3):186.

Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol 2020;153(4):420-1.

Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 2020;9(4):920.

Malki MI. COVID-19 and male infertility: An overview of the disease. Medicine (Baltimore) 2022;101(27):e29401.

Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020;115(5):766-73.

Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril 2020;114(1):33-43.

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503(7477):535-8.

Seymen CM. The other side of COVID-19 pandemic: Effects on male fertility. J Med Virol 2021;93(3):1396-402.

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019–nCoV) originating in China. Cell Host Microbe 2020;27(3):325-8.

Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep 2020;47(6):4383-92.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020;7(1):11.

Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020;76:14-20.

Sheikhzadeh Hesari F, Hosseinzadeh SS, Asl Monadi Sardroud MA. Review of COVID-19 and male genital tract. Andrologia 2021;53(1):e13914.

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000;87(5):E1-9.

Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 2003;41(3):392-7.

Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002;417(6891):822-8.

Xie X, Chen J, Wang X, Zhang F, Liu Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006;78(19):2166-71.

Gu J, Yin J, Zhang M, Li J, Wu Y, Chen J, et al. Study on the clinical significance of ACE2 and its age-related expression. J Inflamm Res 2021;14:2873-82.

Baker SA, Kwok S, Berry GJ, Montine TJ. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One 2021;16(2):e0247060.

Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med 2020;24(16):9472-7.

Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, et al. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 2004;145(10):4703-11.

Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020;16(7):e9610.

Barbirato D da S, Fogacci MF, Azevedo PO de, Sansone C, Carneiro JRI, Barros MCM de. Relationship of COVID-19 pathogenesis for periodontal medicine research. Part I: Pathogenesis of COVID-19. Res Soc Dev 2021;10(5):e1910513729.

Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, et al. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol 2021;21(4):100559.

Luddi A, Luongo FP, Dragoni F, Fiaschi L, Vicenti I, Lupetti P, et al. Cellular and molecular mechanisms of in vivo and in vitro SARS-CoV-2 infection: A lesson from human sperm. Cells 2022;11(17):2631.

Ramal-Sanchez M, Castellini C, Cimini C, Taraschi A, Valbonetti L, Barbonetti A, et al. ACE2 receptor and its isoform short-ace2 are expressed on human spermatozoa. Int J Mol Sci 2022;23(7):3694.

Pan PP, Zhan QT, Le F, Zheng YM, Jin F. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci 2013;14(10):21071-86.

Reis AB, Araújo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol 2010;41(1):75-80.

Dai YJ, Hu F, Li H, Huang HY, Wang DW, Liang Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med 2020;8(7):481.

Ata B, Vermeulen N, Mocanu E, Gianaroli L, Lundin K, Rautakallio-Hokkanen S, et al. SARS-CoV-2, fertility and assisted reproduction. Hum Reprod Update 2023;29(2):177-96.

Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020;369:m1985.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708-20.

Batiha O, Al-Deeb T, Al-Zoubi E, Alsharu E. Impact of COVID-19 and other viruses on reproductive health. Andrologia 2020;52(9):e13791.

Aitken RJ. COVID-19 and human spermatozoa – Potential risks for infertility and sexual transmission? Andrology 2021;9(1):48-52.

Abdel-Moneim A. COVID-19 pandemic and male fertility: clinical manifestations and pathogenic mechanisms. Biochemistry (Mosc) 2021;86(4):389-96.

Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod 2006;74(2):410-6.

Duarte-Neto AN, Monteiro RAA, da Silva LFF, Malheiros DMAC, de Oliveira EP, Theodoro-Filho J, et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology 2020;77(2):186-97.

Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ, et al. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus 2020;6(5):1124-9.

Flaifel A, Guzzetta M, Occidental M, Najari BB, Melamed J, Thomas KM, et al. Testicular changes associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Arch Pathol Lab Med 2021;145(1):8-9.

Ma X, Guan C, Chen R, Wang Y, Feng S, Wang R, et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol Immunol 2021;18(2):487-9.

Achua JK, Chu KY, Ibrahim E, Khodamoradi K, Delma KS, Iakymenko OA, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections on testis. World J Mens Health 2021;39(1):65-74.

Bian XW. Autopsy of COVID-19 patients in China. Natl Sci Rev 2020;7(9):1414-8.

Moghimi N, Eslami Farsani B, Ghadipasha M, Mahmoudiasl GR, Piryaei A, Aliaghaei A, et al. COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis 2021;26(7-8):415-30.

Demyashkin G, Kogan E, Boldyrev D, Demura T, Tyatyushkina A, Annenkova E, et al. Molecular changes in the testes of COVID-19 patients. J Biomol Struct Dyn 2023;1-6.

Costa GMJ, Lacerda SMSN, Figueiredo AFA, Wnuk NT, Brener MRG, Andrade LM, et al. High SARS-CoV-2 tropism and activation of immune cells in the testes of non-vaccinated deceased COVID-19 patients. BMC Biol 2023;21(1):36.

Hajizadeh Maleki B, Tartibian B. COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction 2021;161(3):319-31.

Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F. Interleukin-6 disrupts blood--testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep 2014;4:4260.

Reddy R, Farber N, Kresch E, Seetharam D, Diaz P, Ramasamy R. SARS-CoV-2 in the prostate: immunohistochemical and ultrastructural studies. World J Mens Health 2022;40(2):340-3.

Zhang S, Wang X, Zhang H, Xu A, Fei G, Jiang X, et al. The absence of coronavirus in expressed prostatic secretion in COVID-19 patients in Wuhan city. Reprod Toxicol 2020;96:90-4.

Ruan Y, Hu B, Liu Z, Liu K, Jiang H, Li H, et al. No detection of SARS-CoV-2 from urine, expressed prostatic secretions, and semen in 74 recovered COVID-19 male patients: A perspective and urogenital evaluation. Andrology 2021;9(1):99-106.

He Y, Wang J, Ren J, Zhao Y, Chen J, Chen X. Effect of COVID-19 on male reproductive system – a systematic review. Front Endocrinol (Lausanne) 2021;12:677701.

Haghpanah A, Masjedi F, Salehipour M, Hosseinpour A, Roozbeh J, Dehghani A. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: A systematic review. Prostate Cancer Prostatic Dis 2022;25(1):27-38.

Pecoraro A, Morselli S, Raspollini MR, Sebastianelli A, Nicoletti R, Manera A, et al. The role of COVID-19 in prostate tissue inflammation: first pathological evidence. Prostate Cancer Prostatic Dis 2022;25(2):370-2.

Nassau DE, Best JC, Kresch E, Gonzalez DC, Khodamoradi K, Ramasamy R. Impact of the SARS-CoV-2 virus on male reproductive health. BJU Int 2022;129(2):143-50.

Ma L, Xie W, Li D, Shi L, Ye G, Mao Y, et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol 2021;93(1):456-62.

Schroeder M, Schaumburg B, Mueller Z, Parplys A, Jarczak D, Roedl K, et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect 2021;10(1):1807-18.

Çayan S, Uğuz M, Saylam B, Akbay E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male 2020;23(5):1493-503.

Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9(1):88-98.

Corona G, Vena W, Pizzocaro A, Pallotti F, Paoli D, Rastrelli G, et al. Andrological effects of SARS-Cov-2 infection: a systematic review and meta-analysis. J Endocrinol Invest 2022;45(12):2207-19.

Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Netw Open 2021;4(5):e2111398.

Zheng S, Zou Q, Zhang D, Yu F, Bao J, Lou B, et al. Serum level of testosterone predicts disease severity of male COVID-19 patients and is related to T-cell immune modulation by transcriptome analysis. Clin Chim Acta 2022;524:132-8.

Yassin A, Sabsigh R, Al-Zoubi RM, Aboumarzouk OM, Alwani M, Nettleship J, et al. Testosterone and COVID-19: An update. Rev Med Virol 2023;33(1):e2395.

Salonia A, Pontillo M, Capogrosso P, Gregori S, Carenzi C, Ferrara AM, et al. Testosterone in males with COVID-19: A 7-month cohort study. Andrology 2022;10(1):34-41.

Li C, Ye Z, Zhang AJX, Chan JFW, Song W, Liu F, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by intranasal or intratesticular route induces testicular damage. Clin Infect Dis 2022;75(1):e974-90.

Sansone A, Mollaioli D, Ciocca G, Limoncin E, Colonnello E, Vena W, et al. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest 2021;44(2):223-31.

Sengupta P, Dutta S. COVID-19 and hypogonadism: secondary immune responses rule-over endocrine mechanisms. Hum Fertil (Camb) 2023;26(1):182-5.

Li X, Chen Z, Geng J, Mei Q, Li H, Mao C, et al. COVID-19 and male reproduction: a thorny problem. Am J Mens Health 2022;16(1):15579883221074816.

Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 2004;89(7):3313-8.

Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 2021;6(1):337.

Koç E, Keseroğlu BB. Does COVID-19 worsen the semen parameters? Early results of a tertiary healthcare center. Urol Int 2021;105(9-10):743-8.

Pourmasumi S, Nazari A, Ahmadi Z, Kouni SN, de Gregorio C, Koniari I, et al. The effect of long covid-19 infection and vaccination on male fertility; a narrative review. Vaccines (Basel) 2022;10(12):1982.

Sergerie M, Mieusset R, Croute F, Daudin M, Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil Steril 2007;88(4):970.e1-7.

Barda S, Laskov I, Grisaru D, Lehavi O, Kleiman S, Wenkert A, et al. The impact of COVID-19 vaccine on sperm quality. Int J Gynaecol Obstet 2022;158(1):116-20.

Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open 2020;3(5):e208292.

Delaroche L, Bertine M, Oger P, Descamps D, Damond F, Genauzeau E, et al. Evaluation of SARS-CoV-2 in semen, seminal plasma, and spermatozoa pellet of COVID-19 patients in the acute stage of infection. PLoS One 2021;16(12):e0260187.

Gacci M, Coppi M, Baldi E, Sebastianelli A, Zaccaro C, Morselli S, et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19. Hum Reprod 2021;36(6):1520-9.

Saylam B, Uguz M, Yarpuzlu M, Efesoy O, Akbay E, Çayan S. The presence of SARS-CoV-2 virus in semen samples of patients with COVID-19 pneumonia. Andrologia 2021;53(8):e14145.

Best JC, Kuchakulla M, Khodamoradi K, Lima TFN, Frech FS, Achua J, et al. Evaluation of SARS-CoV-2 in human semen and effect on total sperm number: a prospective observational study. World J Mens Health 2021;39(3):489-95.

Gat I, Kedem A, Dviri M, Umanski A, Levi M, Hourvitz A, et al. Covid-19 vaccination BNT162b2 temporarily impairs semen concentration and total motile count among semen donors. Andrology 2022;10(6):1016-22.

Gonzalez DC, Nassau DE, Khodamoradi K, Ibrahim E, Blachman-Braun R, Ory J, et al. Sperm parameters before and after COVID-19 mRNA vaccination. JAMA 2021;326(3):273-4.

Guo L, Zhao S, Li W, Wang Y, Li L, Jiang S, et al. Absence of SARS-CoV-2 in semen of a COVID-19 patient cohort. Andrology 2021;9(1):42-7.

Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV-2 in human semen – a cohort study. Fertil Steril 2020;114(2):233-8.

Li H, Xiao X, Zhang J, Zafar MI, Wu C, Long Y, et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine 2020;28:100604.

Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril 2020;113(6):1135-9.

Paoli D, Pallotti F, Colangelo S, Basilico F, Mazzuti L, Turriziani O, et al. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J Endocrinol Invest 2020;43(12):1819-22.

Paoli D, Pallotti F, Nigro G, Mazzuti L, Hirsch MN, Valli MB, et al. Molecular diagnosis of SARS-CoV-2 in seminal fluid. J Endocrinol Invest 2021;44(12):2675-84.

Rawlings SA, Ignacio C, Porrachia M, Du P, Smith DM, Chaillon A. No evidence of SARS-CoV-2 seminal shedding despite SARS-CoV-2 persistence in the upper respiratory tract. Open Forum Infect Dis 2020;7(8):ofaa325.

Donders GGG, Bosmans E, Reumers J, Donders F, Jonckheere J, Salembier G, et al. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: a prospective, observational study and validation of the SpermCOVID test. Fertil Steril 2022;117(2):287-96.

Hamarat MB, Ozkent MS, Yılmaz B, Aksanyar SY, Karabacak K. Effect of SARS-CoV-2 infection on semen parameters. Can Urol Assoc J 2022;16(3):E173-7.

Erbay G, Sanli A, Turel H, Yavuz U, Erdogan A, Karabakan M, et al. Short- -term effects of COVID-19 on semen parameters: A multicenter study of 69 cases. Andrology 2021;9(4):1060-5.

Guo TH, Sang MY, Bai S, Ma H, Wan YY, Jiang XH, et al. Semen parameters in men recovered from COVID-19. Asian J Androl 2021;23(5):479-83.

Depuydt C, Bosmans E, Jonckheere J, Donders F, Ombelet W, Coppens A, et al. SARS-CoV-2 infection reduces quality of sperm parameters: prospective one year follow-up study in 93 patients. EBioMedicine 2023;93:104640.

Haghpanah A, Masjedi F, Alborzi S, Hosseinpour A, Dehghani A, Malekmakan L, et al. Potential mechanisms of SARS-CoV-2 action on male gonadal function and fertility: Current status and future prospects. Andrologia 2021;53(1):e13883.

Delli Muti N, Finocchi F, Tossetta G, Salvio G, Cutini M, Marzioni D, et al. Could SARS-CoV-2 infection affect male fertility and sexuality? APMIS 2022;130(5):243-52.

Temiz MZ, Dincer MM, Hacibey I, Yazar RO, Celik C, Kucuk SH, et al. Investigation of SARS-CoV-2 in semen samples and the effects of COVID-19 on male sexual health by using semen analysis and serum male hormone profile: A cross-sectional, pilot study. Andrologia 2021;53(2):e13912.

Murata K, Nakao N, Ishiuchi N, Fukui T, Katsuya N, Fukumoto W, et al. Four cases of cytokine storm after COVID-19 vaccination: Case report. Front Immunol 2022;13:967226.

Drapkina Y, Dolgushina NV, Shatylko TV, Nikolaeva MA, Menzhinskaya IV, Ivanets T, et al. Gam-COVID-Vac (Sputnik V) vaccine has no adverse effect on spermatogenesis in men. Akush Ginekol (Mosk) 2021;7:88-94.

Elhabak DM, Abdelsamie RA, Shams GM. COVID-19 vaccination and male fertility issues: Myth busted. Is taking COVID-19 vaccine the best choice for semen protection and male fertility from risky infection hazards? Andrologia 2022;54(11):e14574.

Lifshitz D, Haas J, Lebovitz O, Raviv G, Orvieto R, Aizer A. Does mRNA SARS-CoV-2 vaccine detrimentally affect male fertility, as reflected by semen analysis? Reprod Biomed Online 2022;44(1):145-9.

Olana S, Mazzilli R, Salerno G, Zamponi V, Tarsitano MG, Simmaco M, et al. 4BNT162b2 mRNA COVID-19 vaccine and semen: What do we know? Andrology 2022;10(6):1023-9.

Reschini M, Pagliardini L, Boeri L, Piazzini F, Bandini V, Fornelli G, et al. COVID-19 vaccination does not affect reproductive health parameters in men. Front Public Health 2022;10:839967.

Rozhivanov RV, Mokrysheva NG. Ejaculate quality and testosterone levels in men vaccinated with Gam-Covid-Vac (Sputnik-V). Russ J Hum Reprod 2021;27(4):22-5.

Safrai M, Herzberg S, Imbar T, Reubinoff B, Dior U, Ben-Meir A. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022;44(4):685-8.

Wang M, Yang Q, Zhu L, Jin L. Investigating impacts of CoronaVac vaccination in males on in vitro fertilization: a propensity score matched cohort study. World J Mens Health 2022;40(4):570-9.

Xia W, Zhao J, Hu Y, Fang L, Wu S. Investigate the effect of COVID-19 inactivated vaccine on sperm parameters and embryo quality in in vitro fertilization. Andrologia 2022;54(6):e14483.

Zaçe D, La Gatta E, Petrella L, Di Pietro ML. The impact of COVID-19 vaccines on fertility – A systematic review and meta-analysis. Vaccine 2022;40(42):6023-34.

Zhu H, Wang X, Zhang F, Zhu Y, Du MR, Tao ZW, et al. Evaluation of inactivated COVID-19 vaccine on semen parameters in reproductive-age males: a retrospective cohort study. Asian J Androl 2022;24(5):441-4.

DOI: https://doi.org/10.21164/pomjlifesci.925

Copyright (c) 2023 Marika Freus, Ignacy Frulenko, Barbara Wiszniewska, Agnieszka Kolasa

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/