Contemporary hybrid acrylic materials and modern thermoplastics in the manufacture of dental prostheses

Robert Kowalski, Małgorzata Kozak, Ewa Sobolewska


Introduction: Some modern acrylic denture base resin enhancing materials, investigated by researchers aiming to improve the properties of the resin, were collected and described as part of this review. Poly(methyl methacrylate) (PMMA), is widely used as a prosthodontic base for both partial and complete dentures, but it has many disadvantages such as low strength, insufficient resistance to fatigue, and porosity. Therefore, the topic of modern thermoplastic materials that could replace acrylic dentures will also be discussed.
Materials and methods: In this article, we reviewed literature available on PubMed, Google Scholar, and NIH. The search was conducted in such electronic databases with the following keywords: “acrylic resin”, “nanoparticles”, “reinforcements of removable dentures”, “BioHPP in dentistry”, and “acetal resin in dentistry”. This study is focused on the effects of adding fibers, fillers, and nanofillers on the properties of PMMA. The paper draws on science-based reviews, original scientific papers, abstracts, and studies published over the past few decades.
Results: The article explores various fillers and fibers that can be added to acrylic resin for dental prostheses. Adding carbon nanotubes, titanium dioxide (TiO2), silicon dioxide (SiO2), and zirconium dioxide (ZrO2) can improve the strength and other properties of the resin. Glass fibers, polyamide, aramid, polyethylene, and polypropylene fibers can increase fracture resistance, impact strength, and modulus. Combining ZrO2, zirconium nanotubes, and silane-treated ZrO2 nanoparticles is suggested to be the best solution for reinforcing dental prostheses.
Conclusion: The properties of PMMA denture base material can be enhanced with the addition of fibers, fillers, silanized nanoparticles, and hybrid reinforcements to reduce damage and cracks. Due to the lack of an ideal material for dentures, the properties of PMMA can be improved with these modifications to make it significantly more convenient for patients to use.


acrylic resin; reinforcements of removable partial dentures; nanoparticles; modern thermoplastics

Full Text:



Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotechnol 2013;4(1):91-7. doi: 10.4236/jbnb.2013.41012.

Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017;12:3801-12.

Braden M, Davy KW, Parker S, Ladizesky NH, Ward IM. Denture base poly(methyl methacrylate) reinforced with ultra-thin modulus polyethylene fibers. Br Dent J 1988;164(4):109-13.

Nakamura M, Takahashi H, Hayakawa I. Reinforcement of denture base resin with short-rod glass fiber. Dent Mater J 2007;26(5):733-8.

Marei MK, El-Sabrooty A, Ragab AY, El-Osairy MA. A study of some physical and mechanical properties of metal-filled acrylic resin. Saudi Dent J 1994;6:69-77.

Wang R, Kayacan R, Küçükeşmen C. Nanotubes/polymethyl methacrylate composite resins as denture base materials. In: Zhang M, Naik RR, Dai L, editors. Carbon nanomaterials for biomedical applications. 1st ed. Berlin: Springer International Publishing; 2015. p. 227-40.

Mahmood WS. The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high impact denture base material. J Bagh Coll Dent 2015;27(1):96-9.

Ibrahim RA. The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat-cure acrylic denture base material. J Bagh Coll Dent 2015;27(3):28-32.

Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent 2014;111(4):318-26.

Harini P, Mohamed K, Padmanabhan TV. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study. Indian J Dent Res 2014;25(4):459-63.

Ahmed MA, El-Shennawy M, Althomali YM, Omar AA. Effect of titanium dioxide nano particles incorporation on mechanical and physical properties on two different types of acrylic resin denture base. World J Nano Sci Eng 2016;6(3):111-9.

Asar NV, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5(3):241-7.

Kul E, Aladağ Lİ, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent 2016;116(5):803-10.

Nejatian T, Johnson A, Van Noort R. Reinforcement of denture base resin. Adv Sci Technol 2006;49:124-9.

Alwan SA, Alameer SS. The effect of the addition of silanized Nano titania fillers on some physical and mechanical properties of heat cured acrylic denture base materials. J Bagh Coll Dent 2015;27(1):86-91.

Safi IN. Evaluation the effect of nano-fillers (TiO2, AL2O3, SiO2) addition on glass transition temperature, E-Modulus and coefficient of thermal expansion of acrylic denture base material. J Bagh Coll Dent 2014;26(1):37-41.

Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 2014;111(4):327-34.

da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology 2012;29(2):1019-23.

Cevik P, Yildirim-Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont 2018;27(8):763-70.

Al-Rais RY, Al-Nakkash WA, Al-Bakri AK. Filler reinforced acrylic denture base material. Part 2 – effect of water sorption on dimensional changes and transverse strength. J Bagh Coll Dent 2005;17(1):6-10.

Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A. The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent 2016;2016:7094056.

Zhang XJ, Zhang XY, Zhu BS, Qian C. Effect of nano ZrO2 on flexural strength and surface hardness of polymethylmethacrylate. Shanghai Kou Qiang Yi Xue 2011;20(4):358-63.

Safi IN, Hassanen KA, Ali NA. Assessment of zirconium oxide nanofillers incorporation and silanation on impact, tensile strength and color alteration of heat polymerized acrylic resin. J Bagh Coll Dent 2012;24(2):36-42.

Mohammed D, Mudhaffar M. Effect of modified zirconium oxide nano-fillers addition on some properties of heat cure acrylic denture base material. J Bagh Coll Dent 2012;24(4):1-7.

Yu W, Wang X, Tang Q, Guo M, Zhao J. Reinforcement of denture base PMMA with ZrO(2) nanotubes. J Mech Behav Biomed Mater 2014;32:192-7.

Mahross HZ, Baroudi K. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur J Dent 2015;9(2):207-12.

Hamedi-Rad F, Ghaffari T, Rezaii F, Ramazani A. Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. J Dent (Tehran) 2014;11(5):495-505.

Juan Carlos FA, Rene GC, Germán VS, Laura Susana AT. Antimicrobial poly(methyl methacrylate) with silver nanoparticles for dentistry: a systematic review. Appl Sci 2020;10(11):4007. doi: 10.3390/app10114007.

Farina AP, Cecchin D, Soares RG, Botelho AL, Takahashi JM, Mazzetto MO, et al. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement. Gerodontology 2012;29(2):e155-60.

Agha H, Flinton R, Vaidyanathan T. Optimization of fracture resistance and stiffness of heat-polymerized high impact acrylic resin with localized E-Glass Fiber Reinforcement® at different stress points. J Prosthodont 2016;25(8):647-55.

Moreno-Maldonado V, Acosta-Torres LS, Barcelo-Santana FH, Vanegas--Lancon RD, Plata-Rodrıguez ME, Castano VM. Fiber-reinforced nano-pigmented poly(methyl methacrylate) as improved denture base. J Appl Polym Sci 2012;126:289-96.

Jassim RK, Radhi AA. Evaluation the biological effect of two types of denture base materials reinforced with silanated glass fiber. J Bagh Coll Dent 2011;23(2):26-30.

Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont 2013;5(2):153-60.

Yu SH, Ahn DH, Park JS, Chung YS, Han IS, Lim JS, et al. Comparison of denture base resin reinforced with polyaromatic polyamide fibers of different orientations. Dent Mater J 2013;32(2):332-40.

Chen SY, Liang WM, Yen PS. Reinforcement of acrylic denture base resin by incorporation of various fibers. J Biomed Mater Res 2001;58(2):203-8.

Uzun G, Hersek N, Tinçer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81(5):616-20.

Mowade TK, Dange SP, Thakre MB, Kamble VD. Effect of fiber reinforcement on impact strength of heat polymerized polymethyl methacrylate denture base resin: in vitro study and SEM analysis. J Adv Prosthodont 2012;4(1):30-6.

John J, Ann Mani S, Palaniswamy K, Ramanathan A, Razak AA. Flexural properties of poly(methyl methacrylate) resin reinforced with oil palm empty fruit bunch fibers: a preliminary finding. J Prosthodont 2015;24(3):233-8.

Xu J, Li Y, Yu T, Cong L. Reinforcement of denture base resin with short vegetable fiber. Dent Mater 2013;29(12):1273-9.

Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 2015;112-113:75-93. doi: 10.1016/j.clay.2015.05.001.

Bertolino V, Cavallaro G, Milioto S, Lazzara G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 2020;245:116502. doi: 10.1016/j.carbpol.2020.116502.

Sakiewicz P, Lutynski M, Soltys J, Pytlinski A. Purification of halloysite by magnetic separation. Physicochem Probl Miner Process 2016;52(2):911-1001.

Abdallah RM. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes. J Adv Prosthodont 2016;8(3):167-71. doi: 10.4047/jap.2016.8.3.167.

Fister JS, Memoli VA, Galante JO, Rosteker W, Urban MR. Biocompatibility of Derlin 150: A creep-resistant polymer for total join prostheses. J Biomed Mater Res 1985;19(5):519-33.

Maeda M. Experimental studies on polyacetal composites for joint prosthesis. Nihon Seikeigeka Gakkai Zasshi 1984;58(9):919-36.

Kirsch A, Ackermann KL. The IMZ osteointegrated implant system. Dent Clin North Am 1989;33(4):733-91.

Lagemann U, Heinzelmann I. Azetal – ein innovativer Werkstoff. Quintessenz Zahntechnik 1997;23:797-804.

Rutkowski A. Acetal – estetyczna alternatywa rozwiązań protetycznych. Nowocz Tech Dent 2007;4:35-8.

Sikorska-Bochińska J, Urbanek R. Elastyczne i sprężyste tworzywo na protezy ruchome i stałe w aspekcie alergii kontaktowej. Twój Prz Stomatol 2005;5:32-4.

Ardelean L, Bortun CM, Podariu AC, Rusu LC. Thermoplastic resins used in dentistry. In: Das CK, editor. Thermoplastic elastomers – synthesis and applications. London: Intech Open; 2015. doi: 10.5772/60931.

Kieć-Świerczyńska M. Alergia kontaktowa. Świat Med Farm 2003;46:53-9.

Ślusarski P, Langot C. Zastosowanie materiału T.S.M. Acetal Dental w wykonawstwie kosmetycznej częściowej protezy nieosiadającej – opis przypadku. Stomatol Współ 2008;5:29-31.

Wawrzynkiewicz T, Ledzion S. Współczesne poglądy na alergię w stomatologii. Stom Współcz 1997;16:19-21.

Bielski J, Kaśka M. Wpływ metalowych uzupełnień protetycznych na procesy elektrochemiczne w jamie ustnej. Protet Stomatol 1973;23:379-85.

Spiechowicz E. Uczulenia na chrom i nikiel. Protet Stomatol 1981;31:1-6.

Arikan A, Ozkan YK, Arda T, Akalin B. An in vitro investigation of water sorption and solubility of two acetal denture base materials. Eur J Prosthodont Restor Dent 2005;13(3):119-22.

Frączak B, Sobolewska E, Ey-Chmielewska H, Chlubek D, Noceń I. The influence of nutritional factors and saliva pH on the shade of resin. Pol J Environ Stud 2007;16(2):353-7.

Sobolewska E, Frączak B, Ey-Chmielewska H, Czarnomysy-Furowicz D, Karakulska J, Ferlas M. Żywotność podstawowych szczepów bakteryjnych na wybranych materiałach protetycznych. Protet Stomatol 2009;59(3):170-1.

Sobolewska E, Frączak B, Czarnomysy-Furowicz D, Ey-Chmielewska H, Karakulska J. Bacteria adhesion to the surface of various prosthetics materials. Ann Acad Med Stetin 2007;53(2):68-71.

Sobolewska E, Frączak B, Lipski M, Grabikowska-Prowans K, Kosierkiewicz A. Żywica acetalowa jako zewnętrzny czynnik alergizujący w środowisku jamy ustnej – badania kliniczne i laboratoryjne. Dent Med Probl 2010;47(1):17-24.

Sobolewska E, Frączak B, Ey-Chmielewska H, Machoy-Mokrzyńska A. Wpływ żywicy acetalowej na tkanki w badaniach in vitro. Protet Stomatol 2007;57(5):45.

Sobolewska E, Frączak B, Ey-Chmielewska H, Machoy-Mokrzyńska A. Wpływ żywicy acetalowej na tkanki w badaniach na szczurach szczepu Wistar. Protet Stomatol 2008;58(6):419-23.

Sobolewska E, Frączak B, Safronow K, Kosierkiewicz A, Lipski M. Wpływ wybranych materiałów stosowanych w protetyce odtwórczej na reakcję tkanek w badaniach in vitro. Dent Med Probl 2009;46(1):33-9.

Staniland P, Wilde CJ, Bottino FA, Di Pasquale G, Pollicino A, Recca A. Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer 1992;33(9):1976-81.

Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28(32):4845-69.

Green S, Schlegel J. A polyaryletherketone biomaterial for use in medical implant applications. Chem Artic News 2015;5(8):1-9.

Monich PR, Berti FV, Porto LM, Henriques B, Novaes de Oliveira AP, Fredel MC, et al. Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Mater Sci Eng C Mater Biol Appl 2017;79:354-62.

Xin H, Shepherd D, Dearn K. Strength of polyether-ether-ketone: effects of sterilisation and thermal ageing. Polym Test 2013;32(6):1001-5.

Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol 2013;39(6):743-9.

Kizuki T, Matsushita T, Kokubo T. Apatite-forming PEEK with TiO2 surface layer coating. J Mater Sci Mater Med 2015;26(1):5359. doi: 10.1007/s10856-014-5359-1.

Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A. Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos Struct 2015;124:88-99.

Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60(1):12-9. doi: 10.1016/j.jpor.2015.10.001.

Zoidis P, Papathanasiou I, Polyzois G. The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. Prosthodont 2016;25(7):580-4.

Fan JP, Tsui CP, Tang CY, Chow CL. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials 2004;25(23):5363-73.

Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y, et al. The electron beam deposition of titanium on polyethereethereketone (PEEK) and resulting enhanced biological properties. Biomaterials 2010;31(13):3465-70.

Williams DF, McNamara A, Turner RM. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Material Sci Letters 1987;6:188-90.

Katzer A, Marquardt H, Westendorf J, Wening JV, von Foerster G. Polyetheretherketone – cytotoxity and mutagenicity in vitro. Biomaterials 2002;23(8):1749-59.

Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima – a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013;17:221-8.

Rabiei A, Sandukas S. Processing and evaluation of bioactive coatings on polymeric implants. J Biomed Mater Res A 2013;101(9):2621-9.

Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A 2013;101(2):465-71.

Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 2014;35(25):6758-75. doi: 10.1016/j.biomaterials.2014.04.085.

Poulsson AH, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials 2014;35(12):3717-28.

Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 2014;15(4):5426-45.

Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, et al. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34(9):2234-43.

Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials 2008;29(11):1563-72.

Niki Y, Matsumoto H, Otani T, Suda Y, Toyama Y. Metal ion concentrations in the joint fluid immediately after total knee arthroplasty. Mod Rheumatol 2001;11(3):192-6.

Toth JM, Wang M, Estes BT, Scifert JL, Seim III HB, Turner AS. Polieteroeteroketon jako materiał do zastosowań kręgosłupa. Biomateriały 2006;27(3):324-34.

Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, et al. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res 2006;85(5):473-8.

Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Retal Res 2012;14(2):170-83.

Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27(11):2331-9.

Sanpo N, Tan ML, Cheang P, Khor KA. Antibacterial property of cold--sprayed HA-Ag/PEEK coating. J Therm Spray Techn 2009;18(1):10-5.

Sandukas S, Yamamoto A, Rabiei A. Osteoblast adhesion to functionally graded hydroxyapatite coatings doped with silver. J Biomed Mater Res A 2011;97(4):490-7.

Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010;7:20-30.

Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 2013;7(1):30-6.

Hallmann L, Mehl A, Sereno N, Hämmerle CH. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci 2012;258(18):7213-8.

Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al. Polyetheretherketone – a suitable material for fixed dental prostheses. J Biomed Mater Res B Appl Biomater 2013;101(7):1209-16.

Costa-Palau S, Torrents-Nicolas J, Brufau-de Barberà M, Cabratosa-Termes J. Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: a clinical report. J Prosthet Dent 2014;112(3):680-2.


Copyright (c) 2023 Robert Kowalski, Małgorzata Kozak, Ewa Sobolewska

License URL: