Neanderthal-derived g.50318299T>G transversion of the HYAL2 gene is not associated with the predisposition to keloid scarring

Andrzej Dmytrzak, Agnieszka Małyszek, Beata Łoniewska, Andrzej Ciechanowicz

Abstract


Introduction: Homo neanderthalensis-derived DNA accounts for an estimated 1–4% of the genome in contemporary Eurasian populations. The g.50318299T>G (c.1252A>C, rs35455589) transversion of the HYAL2 gene, encoding type 2 hyaluronidase, is in East Asians ahighly prevalent marker for the Neanderthal-introgressed haplotype at chromosome 3p21.31. The HYAL2 transversion is in strong linkage disequilibrium with rs11130248 (g.50314769A>G), which predisposes to keloid scarring in the Japanese population. This therefore raises the questions of whether the g.50318299T>G HYAL2 transversion is present in contemporary Poles and whether it predisposes to keloids in our population.

Materials and methods: The g.50318299T>G HYAL2 transversion was identified by sequencing genomic DNA samples isolated 

from the umbilical blood of 200 full-term, healthy newborns and from the peripheral blood of 62 adults with keloids.

Results: There were 2 TG heterozygotes (1%) and 198 wild-type TT homozygotes (99%) in the newborn group. Only TT homozygotes were found in the adult group with keloids. The HYAL2 genotype distribution conformed to the expected Hardy–Weinberg equilibrium.

Conclusions: Neanderthal-derived g.50318299T>G HYAL2 transversion rarely presents in the genome of contemporary Poles and is not associated with the predisposition to keloids in this population.


Keywords


Homo neanderthalensis; genetic polymorphism; hyaluronidase; keloid

Full Text:

PDF (Język Polski)

References


Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science 2010;328(5979):710-22. doi: 10.1126/science.1188021.

Yotova V, Lefebvre JF, Moreau C, Gbeha E, Hovhannesyan K, Bourgeois S, et al. An X-linked haplotype of Neandertal origin is present among all Non-African populations. Mol Biol Evol 2011;28(7):1957-62. doi: 10.1093/molbev/msr024.

Vernot B, Akey JM. Resurrecting surviving Neandertal lineages from modern human genomes. Science 2014;343(6174):1017-21. doi: 10.1126/science.1245938.

Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The genomic landscapes of Neanderthal ancestry in present-day humans. Nature 2014;507(7492):354-7. doi: 10.1038/nature12961.

Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, Gragert L, et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 2011;334(6052):89-94. doi: 10.1126/science.1209202.

Mendez FL, Watkins JC, Hammer MF. A haplotype at STAT2 introgressed from Neanderthals and serves as a candidate of positive selection in Papua New Guinea. Am J Hum Genet 2012;91(2):265-74. doi: 10.1016/j.ajhg.2012.06.015.

Mendez FL, Watkins JC, Hammer MF. Neandertal origin of genetic variation at the cluster of OAS immunity genes. Mol Biol Evol 2013;30(4):798-801. doi: 10.1093/molbev/mst004.

Gittelman RM, Schraiber JG, Vernot B, Mikacenic C, Wurfel MM,Akey JM. Archaic hominin admixture facilitated adaptation to Out-of-Africa environments. Curr Biol 2016;26(24):3375-82. doi: 10.1016/j.cub.2016.10.041.

Simonti CN, Vernot B, Bastarache L, Bottinger E, Carrell DS, Chisholm RL, et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 2016;351(6274):737-41. doi: 10.1126/science.aad2149.

Ding Q, Hu Y, Xu S, Wang J, Jin L. Neanderthal introgression at chromosome 3p21.31 was under positive natural selection in East Asians. Mol Biol Evol 2013;31(3):683-95. doi: 10.1093/molbev/mst260.

Nakashima M, Chung S, Takahashi A, Kamatani N, Kawaguchi T, Tsunoda T, et al. A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet 2010;42(9):786-72. doi: 10.1038/ng.645.

Pastuszak-Gabinowska M, Peregud-Pogorzelski J, Łuksza K, Sznelewski P, Brodkiewicz A. Some aspects of molecular bases of keloid formation. Ann Acad Med Stetin 2011;57(2):10-17.

Bińczak-Kuleta A, Rubik J, Litwin M, Ryder M, Lewandowska K, Taryma­‍-Leśniak O, et al. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis – a single-centre experience. Bosn J Basic Med Sci 2014;14(2):89-93.

Jakkula E, Rehnström K, Varilo T, Pietiläinen OP, Paunio T, Pedersen NL, et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am J Hum Genet 2008;83(6):787-94. doi: 10.1016/j.ajhg.2008.11.005.

Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, et al. Correlation between genetic and geographic structure in Europe. Curr Biol 2008;18(16):1241-48. doi: 10.1016/j.cub.2008.07.049.




DOI: https://doi.org/10.21164/pomjlifesci.282

Copyright (c) 2017 Andrzej Dmytrzak, Agnieszka Małyszek, Beata Łoniewska

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/