Vascular endothelial growth factor, stromal growth factor 1α and endothelial progenitor cells in essential thrombocythemia – is there a link between angiogenesis and vasculogenesis?

Joanna Boinska, Grażyna Gadomska, Katarzyna Regus

Abstract


Introduction: Angiogenesis and vasculogenesis contribute to the development of cancer.
The aim of the present study was to determine the levels of vascular endothelial growth factor-A (VEGF-A) and stromal cellderived factor-1α (SDF-1α) and the count of endothelial progenitor cells (EPCs) in patients with essential thrombocythemia (ET).
Materials and methods: The study included a group of 62 patients diagnosed with ET and 25 healthy volunteers. Vascular endothelial growth factor-A and SDF-1α levels were determined by enzyme-linked immunosorbent assays (ELISAs). Endothelial progenitor cells were evaluated by flow cytometry.
Results: The study showed significantly higher levels of both VEGF-A and SDF-1α in ET patients compared to controls (Me = 65.22 pg/mL vs Me = 25.34 pg/mL; Me = 2351.17 pg/mL vs Me = 1742.50 pg/mL, respectively). However, we could not demonstrate a different count of EPCs in ET patients compared to healthy controls. Furthermore, in 40 ET patients with JAK2 V617F mutation (65%), only VEGF-A levels were significantly higher compared to JAK2 V617F negative patients (Me = 72.00 pg/mL vs Me = 53.38 pg/mL). SDF-1α levels were significantly elevated in patients over 60 years of age (Me = 2635.00 pg/mL vs Me = 2395.02 pg/mL). We found positive correlations between VEGFA and SDF-1α and between VEGF-A and EPCs.
Conclusions: Clinical features such as age over 60 years and Janus 2 kinase (JAK2) mutation may increase angiogenesis in patients with essential thrombocythemia. Despite a positive correlation between VEGF-A and EPCs, the present study suggests weak cooperation between proangiogenic factors and vasculogenesis.


Keywords


essential thrombocythemia; vasculogenesis; endothelial progenitor cells; vascular endothelial growth factor; stromal cell-derived factor-1α

Full Text:

PDF

References


Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391-405.

Thiele J, Kvasnicka HM, Orazi A, Tefferi A, Gisslinger H Essential thrombocythaemia. In: Swelderow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al, editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon:IARC; 2008. p. 48-50.

Bieniaszewska M, Hellmann A. Inne przewlekłe nowotwory mieloproliferacyjne. In: Dmoszyńska A, Robak T, Hus I, editors. Podstawy Hematologii. 3rd ed. Lublin: Czelej. 2015. p. 342-6.

Moulard O, Metha J, Fryzek J, Olivares R, Iqbal U, Mesa RA. Epidemiology of myelofibrosis, essential thrombocythemia, and policythemia vera in the Eurpean Union. Eur J Haematol 2013;92(4):289-97.

Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Canc J 2018;8(1):2.

Góra-Tybor J. Nadpłytkowość samoistna. In: Biblioteka czasopisma hematologia 2. Nowotwory mieloproliferacyjne, zespoły mielodysplastyczne i mastocytoza. Gdańsk: Via Medica; 2017. p. 66-75.

Prochorec-Sobieszek M, Szumera- Ciećkiewicz A, Szymańska-Giemza O. Diagnostyka różnicowa nadpłytkowości samoistnej. Hematologia 2012;(3):201-10.

Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014;123(10):1544-51.

Lal A. Essential thrombocitosis. Medscape; 2017.

Hellmann A, Prejzner W. Nowotwory mieloproliferacyjne i mielodysplastyczne. In: Szczeklik A, Gajewski P. Interna Szczeklika 2018. Kraków: Medycyna Praktyczna; 2018. p. 1779-82.

Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines 2017;5(2):34.

Folkman J. Tumor angiogenesis therapeutic implications. N Engl J Med 1971;285(21):1182-6.

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006;2(3):213-9.

Risau W. Mechanisms of angiogenesis. Nature 1997;386(6626):671-4.

Cleaver O, Krieg PA. Vascular development. In: Rosenthal N, Harvey RP, editors. Heart development and regeneration. Academic Press; 2010. p. 487-528.

Sadler TW. Langman Embriologia. Malejczyk J, Kujawa M, editors. Wrocław: Edra Urban & Partner; 2017. p. 410.

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964-7.

Murasawa S, Asahara T. Endothelial progenitor cells for vasculogenesis. Physiology 2005;20(1):36-42.

Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7(11):1194-201.

Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update 2011;17(5):628-36.

Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103(2):159-65.

Byrne AM, Bouchier‐Hayes DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J Cell Mol Med 2005;9(4):777-94.

Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis. Implication for therapeutic neovascularization and wounel healing. Adv Wound Care 2013;2(6):283-95.

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473(7347):298-307.

Ferrara N. VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 2009;20(4):158-63.

Gadomska G, Stankowska K, Boinska J, Ślusarz R, Tylicka M, Michalska M, et al. VEGF-A, sVEGFR-1 and sVEGFR-2 in BCR-ABL negative myeloproliferative neoplasms. Medicina 2017;53(1):34-9.

Chen H, Shen YF, Gong F, Yang GH, Jiang YQ, Zhang R. Expression of VEGF and its effect on cell proliferation in patients with chronic myeloid leukemia. Eur Rev Med Pharmacol Sci 2015;19(19):3569-73.

Di Raimondo F, Azarro MP, Palumbo GA, Bognato S, Stagno F, Giustolisi GM, et al. Elevated vascular endothelial growth factor (VEGF) serum levels in idiopatic myelofibrosis. Leukemia 2001;15(6):976-80.

Trelinski J, Wierzbowska A, Krawczynska A, Sakowicz A, Pietrucha T, et al. Circulating endothelial cells in essential thrombocythemia and polycythemia vera: correlation with JAK2-V617F mutational status, angiogenic factors and coagulation activation markers. Int J Hematol 2010;91(5):792-8.

Alonci A, Allegra A, Bellomo G, Penna G, D’Angelo A, Quartarone E, et al. Evaluation of circulating endothelial cells, VEGF and VEGFR2 serum levels in patients with chronic myeloproliferative diseases. Hematol Oncol 2008;26(4):235-9.

Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J, et al. The pleiotropic effects of the SDF-1 – CXCR4 axis in organogenesis regeneration and tumorigenesis. Leukemia 2006;20(1):1915-24.

Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signalling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 2007;28(7):299-307.

Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh J-H, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001;97(11):3354-60.

Bae YK, Kim GH, Lee JCH, Seo BM, Joo KM, Lee G, et al. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells. Mol Cells 2017;40(6):386-92.

Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, et al. Combination of stromal-derived factor-1α and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg 2009;50(3):608-16.

Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekeckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med 2009;13(1):87-102.

Buxhofer-Ausch V, Steurer M, Sormann S, Schloegl E, Schimetta W, Gisslinger B, et al. Influence of platelet and white blood cell counts on major thrombosis - analysis from a patient registry in essential thrombocythemia. Eur J Haematol 2016;97(6):511-6.

Falanga A, Marchetti M, Evangelista V, Vignoli A, Licini M, Balicco M, et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 2000;96(13):4261-6.

Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol 2005;33(5):523-30.

Dzietczenia J, Kuliczkowski K. The role of JAK2 in essential thrombocythemia. Acta Haematol Pol 2007;38(20):187-94.

Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood 2017;130(23):2475-83.

Medinger M, Skoda R, Gratwohl A, Theocharides A, Buser A, Heim D, et al. Angiogenesis and vascular endothelial growth factor‐/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol 2009;146(2):150-7.

Medinger M, Passweg J. Angiogenesis in myeloproliferative neoplasms, new markers and future directions. Memo 2014;7:206-10.

Gadomska G, Bartoszewska-Kubiak A, Boinska J, Matiakowska K, Ziołkowska K, Haus O, et al. Selected parameters of angiogenesis and the JAK2, CALR, and MPL mutations in patients with essential thrombocythemia. Clin Appl Thromb Hemost 2018;24(7):1056-60.




DOI: https://doi.org/10.21164/pomjlifesci.968

Copyright (c) 2024 Joanna Boinska, Grażyna Gadomska, Katarzyna Regus

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/