Virulence genes and antibiotic resistance among clinical Klebsiella pneumoniae strains

Agata Pruss, Magdalena Wrona, Paweł Kwiatkowski, Helena Masiuk, Marta Cettler, Stefania Giedrys-Kalemba, Ewa Dudzińska, Barbara Dołęgowska

Abstract


Introduction: Klebsiella pneumoniae is one of the etiological factors of nosocomial infections. Recently, infections caused by these bacteria have become more dangerous due to the acquired resistance to many antibiotics, severely limiting therapeutic options. The most common mechanism of resistance in K. pneumoniae rods is the production of extended-spectrum β-lactamases (ESBL). However, a more perilous mechanism is the production of carbapenemases. The course of the infection process is also influenced by various virulence characteristics, primarily enabling adhesion and aiding in avoiding host immune responses. Most genes encoding mechanisms of resistance and virulence are located on plasmids, facilitating their spread. The aim of the study was to detect selected virulence genes among clinical multidrug-resistant strains of K. pneumoniae.
Materials and methods: We determined the drug susceptibility of strains and confirmed the presence of antibiotic resistance mechanisms using phenotypic methods. Additionally, we assessed the presence of genes encoding selected resistance mechanisms and genes determining selected virulence factors. A total of 134 strains from various hospital units were used for the study.
Results: The highest percentage of strains was isolated from urine (46%). Among the isolates, 72% were from male patients. Fifty-seven percent of K. pneumoniae produced ESBL (KpESBL), while the remaining 43% carried the New Delhi metallo-β-lactamase (NDM) mechanism. The drug susceptibility of the KpESBL varied, with full sensitivity observed only in the case of antibiotics from the carbapenem group. New Delhi metallo-β-lactamase-producing K. pneumoniae showed sensitivity only to amikacin and gentamicin. In KpESBL strains, genes from the TEM family were most observed (74/76). Most of the strains had all 4 β-lactamase-encoding genes (61/76). In the group of strains producing carbapenemases, only the bla NDM gene was detected. Regardless of the resistance mechanisms, the tested strains most often had virulence genes related to the adhesion ability (fimH) and the structure of LPS (wabG).

Keywords


Klebsiella pneumoniae; virulence factors; multidrug resistance

Full Text:

PDF

References


Podschun R, Ullmann U. Klebsiellaspp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11(4):589-603.

Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere 2016;1(5):e00261-16. doi: 10.1128/mSphere.00261-16.

Mączyńska B. Ewolucja patogenności i oporności na środki przeciwbakteryjne u pałeczek Klebsiella. Warszawa: Evereth Publishing; 2015.

Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 2012;65(2):350-9. doi: 10.1111/j.1574-695X.2012.00965.x.

Maharjan G, Khadka P, Siddhi Shilpakar G, Chapagain G, Dhungana GR. Catheter-associated urinary tract infection and obstinate biofilm producers. Can J Infect Dis Med Microbiol 2018;2018:7624857. doi: 10.1155/2018/7624857.

Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013;4(2):107-18. doi: 10.4161/viru.22718.

Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80(3):629-61. doi: 10.1128/MMBR.00078-15.

Zamani A, Yousefi Mashouf R, Ebrahimzadeh Namvar AM, Alikhani MY. Detection of magA gene in Klebsiella spp. Isolated from Clinical SamplesDetection of magA. Iran J Basic Med Sci 2013;16(2):173-6.

Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018;8:4. doi: 10.3389/fcimb.2018.00004.

Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Reguerio V, Tomás A, et al. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc Natl Acad Sci USA 2015;112(46):E6369-78.

Murphy CN, Mortensen MS, Krogfelt KA, Clegg S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013;81(8):3009-17.

Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017;65(2):208-15. doi: 10.1093/cid/cix270.

Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014;6:25-64. doi: 10.4137/PMC.S14459.

Stefaniuk E, Suchocka U, Bosacka K, Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur J Clin Microbiol Infect Dis 2016;35(8):1363-9.

Rahman SU, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int 2018;2018:9519718.

Gniadkowski M. Beta-laktamazy u pałeczek Gram-ujemnych. Mikrobiol Med 1997;2:17.

Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, et al. High Prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front Microbiol 2019;9:3198. doi: 10.3389/fmicb.2018.03198.

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25(4):682-707. doi: 10.1128/CMR.05035-11.

Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13(9):785-96. doi: 10.1016/S1473-3099(13)70190-7.

The European Committee on Antimicrobial Susceptibility Testing – EUCAST. Breakpointtables for interpretation of MICs and zonediameters. EUCAST; 2020. https://www.eucast.org (14.06.2023).

Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010;65(3):490-5.

Ma LC, Fang CT, Lee CZ, Shun CT, Wang JT. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis 2005;192(1):117-28.

Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004;199(5):697-705.

Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, et al. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int J Food Microbiol 2008;125(3):230-5. doi: 10.1016/j.ijfoodmicro.2008.03.005.

Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007;115(12):1400-8. doi: 10.1111/j.1600-0463.2007.00722.x.

Oliver A, Weigel LM, Rasheed JK, McGowan JE Jr, Raney P, Tenover FC. Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 2002;46(12):3829-36. doi: 10.1128/AAC.46.12.3829-3836.2002.

Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 2008;52(4):1413-8. doi: 10.1128/AAC.01103-07.

Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 2011;55(2):934-6. doi: 10.1128/AAC.01247-10.

Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, et al. wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 2013;51(12):4073-8. doi: 10.1128/JCM.01924-13.

Müller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Becker SL. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d’Ivoire. Int J Infect Dis 2020;91:207-9. doi: 10.1016/j.ijid.2019.11.024.

Wang Y, Zhang Q, Jin Y, Jin X, Yu J, Wang K. Epidemiology and antimicrobial susceptibility profiles of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in China. Braz J Microbiol 2019;50(3):669-75.

Mrowiec P, Klesiewicz K, Małek M, Skiba-Kurek I, Sowa-Sierant I, Skałkowska M, et al. Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol 2019;42(4):197-204.

Lev AI, Astashkin EI, Kislichkina AA, Solovieva EV, Kombarova TI, Korobova OV, et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health 2018;112(3):142-51. doi: 10.1080/20477724.2018.1460949.

Dehshiri M, Khoramrooz SS, Zoladl M, Khosravani SA, Parhizgari N, Motazedian MH, et al. The frequency of Klebsiella pneumonia encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum beta lactamases enzymes isolated from urinary tract infection. Ann Clin Microbiol Antimicrob 2018;17(1):4. doi: 10.1186/s12941-018-0256-y.

Mahmoudi S, Pourakbari B, Rahbarimanesh A, Abdosalehi MR, Ghadiri K, Mamishi S. An Outbreak of ESBL-producing Klebsiella pneumoniae in an Iranian Referral Hospital: Epidemiology and Molecular Typing. Infect Disord Drug Targets 2019;19(1):46-54. doi: 10.2174/1871526518666180507121831.

Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 β-lactamasegene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One 2014;9(3):e91800.

Mączyńska B, Neumann K, Junka A, Smutnicka D, Secewicz A, Bartoszewicz M, et al. Analiza cech warunkujących selekcję i przeżywalność w środowisku szpitalnym u szczepów Klebsiella izolowanych z ognisk epidemicznych. Forum Zakażeń 2013;4(2):77-97.

Abayneh M, Tesfaw G, Abdissa A. Isolation of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli and Klebsiella pneumoniae from patients with community-onset urinary tract infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can J Infect Dis Med Microbiol 2018;2018:4846159. doi: 10.1155/2018/4846159.

Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G. Prevalence of blaTEM, blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol 2014;57(2):249-54. doi: 10.4103/0377-4929.134698.

Gao H, Liu Y, Wang R, Wang Q, Jin L, Wang H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine 2020;51:102599. doi: 10.1016/j.ebiom.2019.102599.

Apondi OE, Oduor OC, Gye BK, Kipkoech MK. High prevalnece of multi-drug resistant Klebsiella pneumoniae in a tertiary teaching hospital in western Kenya. Afr J Infect Dis 2016;10(2):89-95.

Singh SK, Mishra M, Sahoo M, Patole S, Sahu S, Misra SR, et al. Antibiotic resistance determinants and clonal relationships among multidrug-resistant isolates of Klebsiella pneumoniae. Microb Pathog 2017;110:31-6.

Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G, Hoelscher M, et al. Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect Dis 2018;18(1):524. doi: 10.1186/s12879-018-3436-7.

Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 2010;16(12):1699-701. doi: 10.1111/j.1469-0691.2010.03385.x.

Xiang T, Chen C, Wen J, Liu Y, Zhang Q, Cheng N, et al. Resistance of Klebsiella pneumoniae strains carrying blaNDM-1 gene and the genetic environment of blaNDM-1. Front Microbiol 2020;11:700.

Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol 2019;37(2):210-8. doi: 10.4103/ijmm.IJMM_19_157.

El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris) 2013;61(5):209-16. doi: 10.1016/j.patbio.2012.10.004.

Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol 2015;62(4):867-74. doi: 10.18388/abp.2015_1148.

Zhang S, Yang G, Ye Q, Wu Q, Zhang J, Huang Y. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front Microbiol 2018;9:289. doi: 10.3389/fmicb.2018.00289.

Rastegar S, Moradi M, Kalantar-Neyestanaki D, Ali Golabi D, Hosseini-Nave H. Virulence factors, capsular serotypes and antimicrobial resistance of hypervirulent Klebsiella pneumoniaeand classical Klebsiella pneumoniae in southeast Iran. Infect Chemother 2019. doi: 10.3947/ic.2019.0027.

Krawczyk B, Śledzińska A, Szemiako K. Charakterystyka izolatów Escherichia coli z krwi hematologicznych dorosłych pacjentów z bakteriemią: translokacja z jelit do krwi wymaga współdziałania wielu czynników wirulencji. Eur J Clin Microbiol Infect Dis 2015;34:1135-43.

Kuş H, Arslan U, Türk Dağı H, Fındık D. Investigation of various virulence factors of Klebsiella pneumoniae strains isolated from nosocomial infections. Mikrobiyol Bul 2017;51(4):329-39. doi: 10.5578/mb.59716.

Jun JB. Klebsiella pneumoniae liver abscess. Infect Chemother 2018;50(3):210-8. doi: 10.3947/ic.2018.50.3.210.




DOI: https://doi.org/10.21164/pomjlifesci.955

Copyright (c) 2023 Agata Pruss, Magdalena Wrona, Paweł Kwiatkowski, Helena Masiuk, Marta Cettler, Stefania Giedrys-Kalemba, Ewa Dudzińska, Barbara Dołęgowska

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/