The effect of melatonin on the barrier properties of human primary aortic endothelial and human aortic smooth muscle cells based on the real-time cell electric impedance sensing system

Roksana Dorantowicz-Jezierska, Mateusz Staciwa, Paulina Gorzelak-Pabiś, Maciej Chałubiński, Marlena Broncel


Introduction: Experimental studies have confirmed the potential vasculoprotective effects of melatonin. The aim of the study was to evaluate the influence of melatonin and its modulative role on
7-ketocholesterol-induced changes in human aortic endothelial cells (HAECs) and human aortic smooth muscle cells (HuAoSMCs).
Materials and methods: The real-time cell electric impedance sensing (xCELLigence) system was used to measure cell impedance, while flow cytometry was employed to assess viability and apoptosis.
Results: It was found that melatonin did not change the impedance and viability of HuAoSMCs, nor did it inhibit their 7-keto-cholesterol-induced apoptosis. Melatonin decreased the impedance of HAECs. However, this effect was not attributed to cell apoptosis. In addition, it did not prevent the 7-ketocholesterol-induced decrease in HAEC impedance. Nevertheless, pretreatment with melatonin at concentrations of 10 nM and 100 nM attenuated the apoptosis caused by 7-ketocholesterol.
Conclusions: This study confirmed the toxic effect of 7-keto-cholesterol on primary human vascular wall cells, using 2 independent methods. We have demonstrated that melatonin has no barrier-protective effect, but low concentrations of melatonin may counteract the toxic effect of 7-ketocholesterol on HAECs through the inhibition of apoptosis. Melatonin has no significant effect on the impedance and viability of HuAoSMCs.


melatonin; 7-ketocholesterol; HAEC; HuAoSMc; apoptosis; impedance

Full Text:



Yildiz BS, Sahin A, Aladag NB, Yildiz M. Association of endogenous melatonin with uric acid and traditional cardiovascular risk factors in healthy young male. Adv Clin Exp Med 2015;24(2):233-7.

Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 2011;50(3):250-60.

Kandemir YB, Tosun V, Güntekin Ü. Melatonin protects against streptozotocin-induced diabetic cardiomyopathy through the mammalian target of rapamycin (mTOR) signaling pathway. Adv Clin Exp Med 2019;28(9):1171-7.

Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, et al. Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 2018;23(1):101-13.

Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta Pharmacol Sin 2012;33(6):775-82.

Tahan G, Gramignoli R, Marongiu F, Aktolga S, Cetinkaya A, Tahan V, et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig Dis Sci 2011;56(3):715-20.

Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ. Anti--angiogenic activity of melatonin in advanced cancer patients. Neuro Endocrinol Lett 2001;22(1):45-7.

Rodella LF, Rossini C, Favero G, Foglio E, Loreto C, Rezzani R. Nicotine--induced morphological changes in rat aorta: the protective role of melatonin. Cells Tissues Organs 2012;195(3):252-9.

Grossman E, Laudon M, Yalcin R, Zengil H, Peleg E, Sharabi Y, et al. Melatonin reduces night blood pressure in patients with nocturnal hypertension. Am J Med 2006;119(10):898-902.

Koziróg M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res 2011;50(3):261-6.

Ekmekcioglu C, Haslmayer P, Philipp C, Mehrabi MR, Glogar HD, Grimm M, et al. Expression of the MT1 melatonin receptor subtype in human coronary arteries. J Recept Signal Transduct Res 2001;21(1):85-91.

Ekmekcioglu C, Thalhammer T, Humpeler S, Mehrabi MR, Glogar HD, Hölzenbein T, et al. The melatonin receptor subtype MT2 is present in the human cardiovascular system. J Pineal Res 2003;35(1):40-4.

Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 2016;56:361-83.

Yuan X, Li B, Li H, Xiu R. Melatonin inhibits IL-1β-induced monolayer permeability of human umbilical vein endothelial cells via Rac activation. J Pineal Res 2011;51(2):220-5.

Kaur C, Sivakumar V, Lu J, Tang FR, Ling EA. Melatonin attenuates hypoxia--induced ultrastructural changes and increased vascular permeability in the developing hippocampus. Brain Pathol 2008;18(4):533-47.

Lizard G, Moisant M, Cordelet C, Monier S, Gambert P, Lagrost L. Induction of similar features of apoptosis in human and bovine vascular endothelial cells treated by 7-ketocholesterol. J Pathol 1997;183(3):330-8.

Lizard G, Monier S, Cordelet C, Gesquière L, Deckert V, Gueldry S, et al. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 1999;19(5):1190-200.

Seye CI, Knaapen MW, Daret D, Desgranges C, Herman AG, Kockx MM, et al. 7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovasc Res 2004;64(1):144-53.

Zhou Q, Wasowicz E, Handler B, Fleischer L, Kummerow FA. An excess concentration of oxysterols in the plasma is cytotoxic to cultured en-dothelial cells. Atheroslcerosis 2000;149(1):191-7.

Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 2004;19(6):583-94.

Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for realtime and label-free monitoring of cell viability. Methods Mol Biol 2011;740:33-43.

Sun M, Fu H, Cheng H, Cao Q, Zhao Y, Mou X, et al. A dynamic real-time method for monitoring epithelial barrier function in vitro. Anal Biochem 2012;425(2):96-103.

Staršíchová A, Kubala L, Lincová E, Pernicová Z, Kozubík A, Souček K. Dynamic monitoring of cellular remodeling induced by the transforming growth factor-β1. Biol Proced Online 2009;11:316-24.

Lotufo CM, Yamashita CE, Farsky SH, Markus RP. Melatonin effect on endothelial cells reduces vascular permeability increase induced by leukotriene B4. Eur J Pharmacol 2006;534(1-3):258-63.

Lopes C, deLyra JL, Markus RP, Mariano M. Circadian rhythm in experimental granulomatous inflammation is modulated by melatonin. J Pineal Res 1997;23(2):72-8.

Yang L, Zhang Y, Ma Y, Du Y, Gu L, Zheng L, et al. Effect of melatonin on EGF- and VEGF-induced monolayer permeability of HUVECs. Am J Physiol Heart Circ Physiol 2019;316(5):H1178-91.

Cui P, Luo Z, Zhang H, Su Y, Li A, Li H, et al. Effect and mechanism of melatonin’s action on the proliferation of human umbilical vein endothelial cells. J Pineal Res 2006;41(4):358-62.

Cui P, Yu M, Luo Z, Dai M, Han J, Xiu R, et al. Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J Pineal Res 2008;44(1):107-14.

Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 2004;37(1):55-70.

Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 2003;60(7):1407-26.

Radogna F, Cristofanon S, Paternoster L, D’Alessio M, De Nicola M, Cerella C, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008;44(3):316-25.

Nemecek GM, Coughlin SR, Handley DA, Moskowitz MA. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci USA 1986;83(3):674-8.

Zhou JL, Zhu XG, Ling YL, Li Q. Melatonin reduces peroxynitrite-induced injury in aortic smooth muscle cells. Acta Pharmacol Sin 2004;25(2):186-90.

Lee S, Byun JK, Park M, Woo Kim S, Lee S, Kim JG, et al. Melatonin inhibits vascular smooth muscle cell proliferation and apoptosis through upregulation of Sestrin2. Exp Ther Med 2020;19(6):3454-60.

Zahm JM, Baconnais S, Monier S, Bonnet N, Bessède G, Gambert P, et al. Chronology of cellular alterations during 7-ketocholesterol-induced cell death on A7R5 rat smooth muscle cells: analysis by time lapse-video microscopy and conventional fluorescence microscopy. Cytometry A 2003;52(2):57-69.

Martinet W, De Bie M, Schrijvers DM, De Meyer GR, Herman AG, Kockx MM. 7-ketocholesterol induces pro-tein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004;24(12):2296-301.

Herrmann J, Edwards WD, Holmes DR Jr, Shogren KL, Lerman LO, Ciechanover A, et al. Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. J Am Coll Cardiol 2002;40(11):1919-27.

Shi D, Xiao X, Wang J, Liu L, Chen W, Fu L, et al. Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J Pineal Res 2012;53(2):154-65.

Lizard G, Miguet C, Besséde G, Monier S, Gueldry S, Neel D, et al. Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 2000;28(5):743-53.


Copyright (c) 2023 Roksana Dorantowicz-Jezierska, Mateusz Staciwa, Paulina Gorzelak-Pabiś, Maciej Chałubiński, Marlena Broncel

License URL: