Dynamics of changes in the concentrations of anandamide and 2-arachidonoylglycerol and their impact on the carbohydrate-lipid metabolism in patients after kidney transplantation in the follow-up study

Elżbieta Cecerska-Heryć, Natalia Serwin, Bartłomiej Grygorcewicz, Daria Adamiak, Marta Gliźniewicz, Agnieszka Butko, Barbara Dołęgowska

Abstract


Endocannabinoids are lipid metabolites that have paracrine effects. Emerging evidence indicates a role of endocannabinoids and their cognate receptors in synaptic modulation and plasticity at a wide range of synapses throughout the central nervous system. This study aimed to analyze the dynamics of changes in the concentrations of 2 endocannabinoids (anandamide – ANA, and 2-arachidonoylglycerol – 2-AG) and their impact on the carbohydrate-lipid metabolism in patients before kidney transplantation and 7 days, 1, 3, and 6 months after transplantation. Considering the pro-inflammatory action of the compound, an increase in the concentration of 2-AG causes deterioration in kidney function, which, in the case of tests performed after transplantation, is associated with a poor prognosis. In our results, the highest concentration was obtained in the group of patients before transplantation and the lowest after 6 months. In the group of patients after transplantation, ANA and 2-AG were significantly correlated with lipid metabolism parameters, adipocytokines, and inflammatory markers. As both endocannabinoids play a very important role in improving kidney function after transplantation, future studies are needed to examine the potential mechanisms for their action and clinical implication.

Keywords


endocannabinoids; transplantation; anandamide; 2-arachidonoylglycerol

Full Text:

PDF

References


Sancho R, Calzado MA, Di Marzo V, Appendino G, Muñoz E. Anandamide inhibits nuclear factor-κB activation through a cannabinoid receptor-independent pathway. Mol Pharmacol 2003;63(2):429-38.

Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 2001;98(16):9371-6.

Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964;86 (8):1646-7.

Sugiura T, Kishimoto S, Oka S, Gokoh M. Biochemistry, pharmacology and physiology of 2-arachidonyloglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 2006;45(5):405-46.

Quercioli A, Pataky Z, Vincenti G, Makoundou V, Di Marzo V, Montecucco F, et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 2011;32(11):1369-78.

Di Marzo V, Côté M, Matias I, Lemieux I, Arsenault BJ, Cartier A, et al. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 2009;52(2):213-7.

Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006;58(3):389-462.

Nakajima Y, Furuichi Y, Biswas KK, Hashiguchi T, Kawahara K, Yamaji K, et al. Endocannabinoid, anandamide in gingival tissue regulates the periodotal inflammation through NF-κB pathway inhibiotion. FEBS Lett 2006;580(2):613-9.

Jasińska A, Pietruczuk M. Adipocytokiny – białka o wielokierunkowym działaniu. J Lab Diagnost 2010;46(3)331-8.

Tam J. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol 2016;27(3):267-76.

Sena CM, Pereira AM, Seiça R. Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013;1832(12):2216-31.

Li J, Wang DH. Differential mechanisms mediating depressor and diuretic effects of anandamide. J Hypertens 2006;24(1):2271-6.

Hsu YC, Lei CC, Shih YH, Ho C, Lin CL. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice. Am J Med Sci 2015;349(2):162-8.

Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, et al. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 2011;60(9):2386-96.

Zhang F, Hong S, Stone V, Smith PJW. Expression of cannabinoid CB1 receptors in models of diabetic neuropathy. J Pharmacol Exp Ther 2007;323(2):508-15.

Engeli S, Böhnke J, Feldpausch M, Gorzelniak K, Janke J, Bátkai S, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005;54(10):2838-43.

Ruby MA, Nomura DK, Hudak CSS, Mangravite LM, Chiu S, Casida JE, et al. Overactive endocannabinoid signaling impairs apolipoprotein E-mediated clearance of triglyceride-rich lipoproteins. Proc Natl Acad Sci USA 2008;105(38):14561-6.

Leśniowski B, Kumor A, Jasińska A, Pietruczuk M, Małecka-Panas E. Rezystyna – nowy marker laboratoryjny przydatny w rozpoznawaniu ostrego zapalenia trzustki. Pol Merk Lek 2007;131:385-7.

Blüher M, Engeli S, Klöting N, Berndt J, Fasshauer M, Bátkai S, et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 2006;55(11):3053-60.

Matias I, Gonthier MP, Orlando P, Mardiatis V, De Petrocellis L, Cervino C, et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and β-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 2006;91(8):3171-80.




DOI: https://doi.org/10.21164/pomjlifesci.898

Copyright (c) 2023 Elżbieta Cecerska-Heryć, Natalia Serwin, Bartłomiej Grygorcewicz, Daria Adamiak, Marta Gliźniewicz, Agnieszka Butko, Barbara Dołęgowska

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/