Peculiarities of some candidate gene polymorphisms in Parkinson’s disease

Aleena Parveen Shaikh, Rajneesh Khurana, Nameera Parveen Shaikh, Joy Dip Barua, Ashraf Ali, Ia Murvanidze, Eteri Saralidze, Irina Nakashidze

Abstract


Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder among elderly individuals, after Alzheimer’s disease. This complex disorder manifests with multiple motor and non-motor features and is often diagnosed only after the onset of significant pathological symptoms. Based on the presumption that epigenetic mechanisms are involved in neurodevelopment and synaptic transmission, it is hypothesized that epigenetic alterations are closely connected to the development of PD. Several studies have reported that genetic risk factors are involved in PD susceptibilities. These factors play a prominent role in the predisposition and development of PD and may be closely linked to different metabolic pathways. In this review, we revise associations between single nucleotide polymorphisms (SNPs) and PD pathogenesis.

Keywords


Parkinson’s disease; single nucleotide polymorphism; SNCA; GBA; VDR

Full Text:

PDF

References


Hancock DB, Martin ER, Vance JM, Scott WK. Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease. Neurogenetics 2008;9(4):249-62.

Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, et al. Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 2007;64(10):666-72.

Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006;296(6):661-70.

Mizuta I, Tsunoda T, Satake W, Nakabayashi Y, Watanabe M, Takeda A, et al. Calbindin 1, fibroblast growth factor 20, and alpha-synuclein in sporadic Parkinson’s disease. Hum Genet 2008;124(1):89-94.

Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012;2(1):a008888.

Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518(7539):317-30.

Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 2016;19(1):102-10.

Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 2015;9:58.

Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet 2007;16 Spec No. 2:R183-94.

McCulloch CC, Kay DM, Factor SA, Samii A, Nutt JG, Higgins DS, et al. Exploring gene-environment interactions in Parkinson’s disease. Hum Genet 2008;123(3):257-65.

Mayeux R, Denaro J, Hemenegildo N, Marder K, Tang MX, Cote LJ, et al. A population-based investigation of Parkinson’s disease with and without dementia. Relationship to age and gender. Arch Neurol 1992;49(5):492-7.

Klein C, Schlossmacher MG. The genetics of Parkinson disease: implications for neurological care. Nat Clin Pract Neurol 2006;2(3):136-46.

Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 2011;7(6):e1002141.

Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 2005;102(51):18676-81.

Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996;274(5290):1197-9.

Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 2013;125(5):753-69.

Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003;302(5646):841.

Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004;364(9440):1167-9.

McCarthy JJ, Linnertz C, Saucier L, Burke JR, Hulette CM, Welsh-Bohmer KA, et al. The effect of SNCA 3′ region on the levels of SNCA-112 splicing variant. Neurogenetics 2011;12(1):59-64.

Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large--scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014;46(9):989-93.

Kay DM, Factor SA, Samii A, Higgins DS, Griffith A, Roberts JW, et al. Genetic association between alpha-synuclein and idiopathic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 2008;147B(7):1222-30.

Krüger R, Vieira-Saecker AM, Kuhn W, Berg D, Müller T, Kühnl N, et al. Increased susceptibility to sporadic Parkinson’s disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol 1999;45(5):611-7.

Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, et al. SNCA polymorphisms, smoking, and sporadic Parkinson’s disease in Japanese. Parkinsonism Relat Disord 2012;18(5):557-61.

Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276(5321):2045-7.

Atik A, Stewart T, Zhang J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 2016;26(3):410-8.

Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese S, Vesterager LB, et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol Neurodegener 2016;11:7.

Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohé CF, et al. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics 2006;7(3):133-8.

Han W, Liu Y, Mi Y, Zhao J, Liu D, Tian Q. Alpha-synuclein (SNCA) polymorphisms and susceptibility to Parkinson’s disease: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2015;168B(2):123-34.

Wei Y, Yang N, Xu Q, Sun Q, Guo J, Li K, et al. The rs3756063 polymorphism is associated with SNCA methylation in the Chinese Han population. J Neurol Sci 2016;367:11-4.

Zheng J, Yang X, Zhao Q, Tian S, Huang H, Chen Y, et al. Festination correlates with SNCA polymorphism in Chinese patients with Parkinson’s disease. Parkinsons Dis 2017;2017:3176805.

Brady RO, Kanfer J, Shapiro D. The metabolism of glucocerebrosides: I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 1965;240:39-43.

Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 2008;372(9645):1263-71.

Gan-Or Z, Giladi N, Rozovski U, Shifrin C, Rosner S, Gurevich T, et al. Genotype–phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 2008;70(24):2277-83.

Beavan M, McNeill A, Proukakis C, Hughes DA, Mehta A, Schapira AH. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol 2015;72(2):201-8.

Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T, et al. GBA-associated PD presents with nonmotor characteristics. Neurology 2011;77(3):276-80.

Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 2010;67(12):1464-72.

Ran C, Belin AC. The genetics of Parkinson’s disease: review of current and emerging candidates. J Parkinsonism Restless Legs Syndrome 2014;2014(4):63-75.

Gegg ME, Sweet L, Wang BH, Shihabuddin LS, Sardi SP, Schapira AH. No evidence for substrate accumulation in Parkinson brains with GBA mutations. Mov Disord 2015;30(8):1085-9.

Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004;81(1):70-3.

Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. New Engl J Med 2009;361(17):1651-61.

Toft M, Pielsticker L, Ross OA, Aasly JO, Farrer MJ. Glucocerebrosidase gene mutations and Parkinson disease in the Norwegian population. Neurology 2006;66(3):415-7.

Clark LN, Ross BM, Wang Y, Mejia-Santana H, Harris J, Louis ED, et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 2007;69(12):1270-7.

Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen--Plotkin A, et al. Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 2016;73(10):1217-24.

Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008;29(5):567-83.

Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney--Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet 2004;41(12):937-40.

Sidransky E. Heterozygosity for a Mendelian disorder as a risk factor for complex disease. Clin Genet 2006;70(4):275-82.

Halperin A, Elstein D, Zimran A. Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 2006;36(3):426-8.

Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, et al. Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 2011;12:104.

Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. New Engl J Med 2004;351(19):1972-7.

Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005;29(1):21-30.

Newmark HL, Newmark J. Vitamin D and Parkinson’s disease – a hypothesis. Mov Disord 2007;22(4):461-8.

Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol 2010;67(7):808-11.

Fahmy EM, Elawady ME, Sharaf S, Heneidy S, Ismail RS. Vitamin D receptor gene polymorphisms and idiopathic Parkinson disease: an Egyptian study. Egypt J Neurol Psychiatr Neurosurg 2021;57(1):102.

Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol 2008;65(10):1348-52.

Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, et al. Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet 2011;75(2):201-10.

Kim JS, Kim YI, Song C, Yoon I, Park JW, Choi YB, et al. Association of vitamin D receptor gene polymorphism and Parkinson’s disease in Koreans. J Korean Med Sci 2005;20(3):495-8.

Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Kawasaki K, Noya M, et al. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson’s disease. Mov Disord 2012;27(2):264-71.

Redenšek S, Kristanc T, Blagus T, Trošt M, Dolžan V. Genetic variability of the vitamin D receptor affects susceptibility to Parkinson’s disease and dopaminergic treatment adverse events. Front Aging Neurosci 2022;14:853277.

Zhang ZT, He YC, Ma XJ, Li DY, Lu GC. Association between vitamin D receptor gene polymorphisms and susceptibility to Parkinson’s disease: a meta-analysis. Neurosci Lett 2014;578:122-7.

Kang SY, Park S, Oh E, Park J, Youn J, Kim JS, et al. Vitamin D receptor polymorphisms and Parkinson’s disease in a Korean population: revisited. Neurosci Lett 2016;628:230-5.

Lv Z, Tang B, Sun Q, Yan X, Guo J. Association study between vitamin D receptor gene polymorphisms and patients with Parkinson disease in Chinese Han population. Int J Neurosci 2013;123(1):60-4.

Han X, Xue L, Li Y, Chen B, Xie A. Vitamin D receptor gene polymorphism and its association with Parkinson’s disease in Chinese Han population. Neurosci Lett 2012;525(1):29-33.

Török R, Török N, Szalardy L, Plangar I, Szolnoki Z, Somogyvari F, et al. Association of vitamin D receptor gene polymorphisms and Parkinson’s disease in Hungarians. Neurosci Lett 2013;551:70-4.

Gatto NM, Sinsheimer JS, Cockburn M, Escobedo LA, Bordelon Y, Ritz B. Vitamin D receptor gene polymorphisms and Parkinson’s disease in a population with high ultraviolet radiation exposure. J Neurol Sci 2015;352(1-2):88-93.

Wider C, Vilariño-Güell C, Jasinska-Myga B, Heckman MG, Soto-Ortolaza AI, Cobb SA, et al. Association of the MAPT locus with Parkinson’s disease. Eur J Neurol 2010;17(3):483-6.

Wang KS, Mullersman JE, Liu XF. Family-based association analysis of the MAPT gene in Parkinson disease. J Appl Genet 2010;51(4):509-14.

Fazeli A, Motallebi M, Jamshidi J, Movafagh A, Ghaedi H, Emamalizadeh B, et al. Vitamin D receptor gene rs4334089 polymorphism and Parkinson’s disease in Iranian population. Basal Ganglia 2016;6(3):157-60.

Meamar R, Javadirad SM, Chitsaz N, Ghahfarokhi MA, Kazemi M, Ostadsharif M. Vitamin D receptor gene variants in Parkinson’s disease patients. Egypt J Med Hum Genet 2017;18(3):225-30.

Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 2015;528(7583):575-9.

Oertel WH. Recent advances in treating Parkinson’s disease. F1000Res 2017;6:260.

Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 2017;6:28.

Siokas V, Aloizou AM, Liampas I, Bakirtzis C, Tsouris Z, Sgantzos M, et al. Myelin-associated oligodendrocyte basic protein rs616147 polymorphism as a risk factor for Parkinson’s disease. Acta Neurol Scand 2022;145(2):223-8.

Leggio L, Vivarelli S, L’Episcopo F, Tirolo C, Caniglia S, Testa N, et al. microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 2017;18(12):2698.

Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007;317(5842):1220-4.

Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. Front Mol Neurosci 2017;10:352.

Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013;22(3):608-20.

Zhang Z, Cheng Y. miR-16-1 promotes the aberrant α-synuclein accumulation in Parkinson disease via targeting heat shock protein 70. Scientific World Journal 2014;2014:938348.

Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, Mizuno Y, et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 2005;14(1):71-84.

Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011;20(15):3067-78.

Xiong R, Wang Z, Zhao Z, Li H, Chen W, Zhang B, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 2014;35(3):705-14.




DOI: https://doi.org/10.21164/pomjlifesci.893

Copyright (c) 2023 Irina Nakashidze

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/