Antioxidant properties of selected parts of Syringa vulgaris L.

Nikola Lewandowska, Adam Klimowicz

Abstract


Introduction: Antioxidants, in addition to their general positive effect on health, inhibit the aging of the skin. Many plant extracts are a valuable source of natural antioxidants that can be used in the production of cosmetics and cosmetology. Syringa vulgaris L. is a plant that contains flavonoids, one of the most important groups of natural compounds that eliminate free radicals.
The aim of this study was to determine and compare the antioxidant activity of the extracts prepared from selected S. vulgaris L. parts. We analyzed the influence of the solvent and the extraction time on the antioxidant potential of extracts.
Materials and methods: Alcoholic extracts from selected parts of S. vulgaris L. were prepared by ultrasound-assisted extraction, for 15, 30, and 60 min, and their antioxidant activity was evaluated. The analysis of the antioxidant potential was performed by 2,2-diphenyl--1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-sulfonic acid) – ABTS methods using a spectrophotometer. The raw material used to prepare extracts comprised dried leaves and flowers harvested during flowering and dried fruits harvested during fruiting. The solvents applied were methanol, ethanol, isopropanol, and n-propanol at concentrations of 40%, 70%, and 100%.
Results: The highest mean antioxidant activity evaluated using the ABTS method was 96.4% radical scavenging activity (RSA) for the leaf extract of S. vulgaris L., prepared in 70% methanol for 15 min. The highest antioxidant potential of the leaf extract determined using the DPPH method was 87.9% for concentrated ethanol applied for the same time. The lowest antioxidant activity was 1.36% RSA in a fruit extract extracted for 30 min, prepared in 99% n-propanol, determined by the ABTS method, and 6.3% RSA as evaluated using the DPPH method. The antioxidant potential was markedly lower for the fruit extracts.
Conclusions: The best antioxidant properties were demonstrated by the extracts made from the leaves of S. vulgaris evaluated using both methods. The lowest results were obtained for fruit extracts. The type of extractant used and the duration of the ultrasonically assisted extraction affected the ability of the obtained extracts to neutralize free radicals. The results show that S. vulgaris is a valuable source of antioxidants, especially its leaves and flowers.

Keywords


Syringa vulgaris L.; antioxidants; ultrasound-assisted extraction; antioxidant activity; DPPH; ABTS

Full Text:

PDF

References


Zięba A, Marwicka J. Participation of free radicals in the skin aging process. Aesthetic Cosmetol Med 2020;9(4):417-21.

Kołaczek A. Przegląd metod pielęgnacji skóry dojrzałej. Kosmet Estet 2015;4(6):541-5.

Zegarska B, Woźniak M. Przyczyny wewnątrzpochodnego starzenia się skóry. Gerontol Pol 2006;14(4):153-9.

Skotnicka M, Golan M, Szmukała N. Rola naturalnych przeciwutleniaczy pochodzenia roślinnego w profilaktyce nowotworowej. Ann Acad Med Gedan 2017;47:119-27.

Karadag A, Ozcelik B, Saner S. Review of methods to determine antioxidant capacities. Food Anal Methods 2009;2(1):41-60.

Koss-Mikołajczyk I, Baranowska M, Namieśnik J, Bartoszek A. Metody oznaczania właściwości przeciwutleniających fitozwiązków w systemach komórkowych z wykorzystaniem zjawiska fluorescencji/luminescencji. Postepy Hig Med Dosw 2017;71:602-17.

Flieger J, Flieger M. The [DPPH•/DPPH-H]-HPLC-DAD method on tracking the antioxidant activity of pure antioxidants and goutweed (Aegopodium podagraria L.) hydroalcoholic extracts. Molecules 2020;25(24):6005.

Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et.al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014;2014:761264.

Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 2015;71:40-56.

Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut 2017;230:125-33.

Godlewska M. Lilak zwyczajny – roślina ozdobna o właściwościach leczniczych. Wiad Zielar 2002;44(5):14-5.

Niemiera AX. Lilacs Syringa spp. Virginia Tech 2018;3010-1493. https://vtechworks.lib.vt.edu/bitstream/handle/10919/87916/30101493.pdf?sequence=1 (10.04.2021).

Juntheikki-Palovaara I, Antonius K, Lindén L, Korpelainen H. Microsatellite markers for common lilac (Syringa vulgaris L.). Plant Genetic Resources 2013;11(3):279-82.

Pilarski J. Gradient of photosynthetic pigments in the bark and leaves of lilac (Syringa vulgaris L.). Acta Physiol Plantar 1999;21:365-73.

Aikio S, Taulavuori K, Hurskainen S, Taulavuori E, Tuomi J. Contributions of day length, temperature and individual variability on the rate and timing of leaf senescence in the common lilac Syringa vulgaris. Tree Physiol 2019;39(6):961-70.

Jędrzejuk A, Szlachetka W. Development of flower organs in common lilac (Syringa vulgaris L.) cv. Mme Florent Stepman. Acta Biol Cracov Series Botanica 2005;47(2):41-52.

Tóth G, Barabás C, Tóth A, Kéry A, Béni S, Boldizsár I, et al. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed Chromatogr 2016;30(6):923-32.

Tóth G, Barabás C, Tóth A, Kéry A, Béni S, Boldizsár I, et al. Phenolic profile, antioxidant and antinociceptive properties of Syringa vulgaris. Planta Med 2015;81(16):PM_41.

Su G, Cao Y, Li C, Yu X, Gao X, Tu P, et. al. Phytochemical and pharmacological progress on the genus Syringa. Chem Cent J 2015;9:2.

Zhu W, Wang Z, Sun Y, Yang B, Wang Q, Kuang H. Traditional uses, phytochemistry and pharmacology of genus Syringa: a comprehensive review. J Ethnopharmacol 2021;266;113465.

Ma JY, Liu SH, Jiao SG, Xing WW, Sun JJ, Luo YI, et al. Phytochemical and pharmacological progress on genus Syringa. Zhongguo Zhong Yao Za Zhi 2020;45(8):1833-43.

Filipek A, Wyszomierska J, Michalak B, Kiss AK. Syringa vulgaris bark as a source of compounds affecting the release of inflammatory mediators from human neutrophils and monocytes/macrophages. Phytochem Letters 2019;30:309-13.

Oku H, Maeda M, Kitagawa F, Ishiguro K. Effect of polyphenols from Syringa vulgaris on blood stasis syndrome. J Clin Biochem Nutr 2020;67(1):84-8.

Machida K, Kaneko A, Hosogai T, Kakuda R, Yaoita Y, Kikuchi M. Studies on the constituents of Syringa species. X. Five new iridoid glycosides from the leaves of Syringa reticulate (Blume) Hara. Chem Pharm Bull (Tokyo) 2002;50(4):493-7.

Rudolf PO, Slabaugh PE, Shaw NL. Syringa L. lilac. Woody Plant Seed Manual 2008:1083-6. https://www.fs.fed.us/rm/pubs_other/wo_AgricHandbook727/wo_AgricHandbook727_1083_1086.pdf (15.04.2021).

Jasiński M, Mazurkiewicz E, Rodziewicz P, Figlerowicz M. Flawonoidy – budowa, właściwości i funkcja ze szczególnym uwzględnieniem roślin motylkowatych. Biotechnologia 2009;2(85):81-94.

Piątkowska E, Kopeć A, Leszczyńska T. Antocyjany – charakterystyka, występowanie i oddziaływanie na organizm człowieka. Żywn Nauka Technol Jakość 2011;4(77):24-35.

Karłowicz-Bodalska K, Han S, Bodalska A, Freier J, Smoleński M. Przeciwzapalne właściwości wybranych roślin zawierających związki irydoidowe. Post Fitoter 2017;18(3):229-34.

Abu-Darwish MS, Kyslychenko VS, Popyk AI, Korol VV. Obtaining and standardization of the thick extract from syringa leaves. Ukraine: National University of Pharmacy; 2013. p. 285-6.

Muzykiewicz A, Florkowska K, Nowak A, Zielonka-Brzezicka J, Klimowicz A. Antioxidant activity of St. John’s Wort extracts obtained with ultrasound-assisted extraction. Pomeranian J Life Sci 2019;65(4):89-93. doi: 10.21164/pomjlifesci.640.

Nowak A, Szatan D, Zielonka-Brzezicka J, Florkowska K, Muzykiewicz A, Klimowicz A. Antioxidant activity of selected parts of Prunus domestica L. harvested at two ripening stages. Pomeranian J Life Sci 2020;66(2):65-9. doi: 10.21164/pomjlifesci.591.

Piszcz P, Boguszewska P, Głód BK. Właściwości antyoksydacyjne wybranych preparatów roślinnych. Camera Sep 2017;9(1):11-22.

Muzykiewicz A, Zielonka-Brzezicka J, Klimowicz A. Antioxidant potential of Hippophae rhamnoides L. extracts obtained with green extraction technique. Herba Pol 2018;64(4):14-22.

Kazimierczak R, Hallmann E, Sokołowska O, Rembiałkowska E. Zawartość związków bioaktywnych w roślinach zielarskich z uprawy ekologicznej i konwencjonalnej. J Res Applic Agricult Engin 2011;56(3):200-5.

Leja M, Mareczek A. Wybrane związki zawarte w roślinach mające wpływ na ich wartość biologiczną. Antyoksydacyjne właściwości roślin. p. 15-20. http://fundacja.ogr.ar.krakow.pl/pdf/M.Leja%20i%20A.%20Mareczek_15-20.pdf (16.05.2021).

Olędzki R. Potencjał antyoksydacyjny owoców i warzyw oraz jego wpływ na zdrowie człowieka. Nauki Inż Technol 2012;1(4):44-54.

Talib WH, Mahasneh AM. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 2010;78(1):33-45.

Abu-Darwish MS, Rababah TM, Abdulhaq B, Kyslychenko VS, Popik AI, Korol VV, et al. Determination of minerals and amino acids contents, anti--inflammatory and hepatoprotective effects of Syringa vulgaris L. extracts. World Academy of Science, Engineering and Technology 2012;69:1569-76.

Varga E, Barabás C, Tóth A, Boldizsár I, Noszál B, Tóth G. Phenolic composition, antioxidant and antinociceptive activities of Syringa vulgaris L. bark and leaf extracts. Nat Prod Res 2019;33:1664-9.

Muzykiewicz A, Zielonka-Brzezicka J, Klimowicz A. Aktywność przeciwutleniająca ekstraktów z wybranych roślin należących do rodziny Rosaceae. Post Fitoter 2018;19(3):149-56.

Ahmed MF, Rao AS, Ahemad SR, Ibrahim M. Phytochemical studies and antioxidant activity of Melia azedarach Linn leaves by DPPH scavenging assay. Int J Pharm Applic 2012;3(1):271-6.




DOI: https://doi.org/10.21164/pomjlifesci.860

Copyright (c) 2022 Nikola Lewandowska, Adam Klimowicz

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/