Can laser therapy modify the secretion of the tissue-type plasminogen activator and its inhibitor in an endothelial cell culture under hyperglycemia?

Krzysztof Góralczyk, Justyna Szymańska, Zbigniew Ziętek, Katarzyna Szot, Jacek Fisz, Danuta Rość

Abstract


Introduction: The effect of low-level laser therapy on the secretion of tissue-type plasminogen activator (t-PA) and its inhibitor (PAI-1) in an endothelial cell (EC) culture under hyperglycemia is the subject of the presented work. Hyperglycemia associated with diabetes causes vascular EC dysfunction. Low-level laser therapy is a good method to support the pharmacological treatment of diabetes complications.

Materials and methods: We used lasers of 2 wavelengths: 635 nm and 830 nm with dose of 2 J/cm2. The experiment was performed in vitro in 4 groups of EC: 1 – no glucose in culture medium, no irradiation (control), 2 – glucose, no irradiation, 3 – glucose, laser 635 nm, 4 – glucose, laser 830 nm. After 2 irradiations, cells were counted and the t-PA and PAI-1 antigen (Ag) concentration in the supernatant was measured.

Results: In group 2, we observed a statistically significant lower number of cells (p < 0.0001) and a higher concentration of t-PA:Ag and PAI-1:Ag (p < 0.05) compared to the control group. However, in groups 3 and 4, the number of cells increased and the concentration of t-PA:Ag and PAI-1:Ag decreased compared to group 2 and nearly reached the values in the control group.

Conclusions: Hyperglycemia affects the fibrinolytic activity of ECs which is manifested by a significant increase in t-PA:Ag and PAI:Ag concentrations – recognized markers of endothelial damage. Irradiation of ECs by a low-power laser caused attenuation of the adverse effects of hyperglycemia. A tendency towards a decrease in t-PA:Ag and PAI-1:Ag concentration in the supernatant was observed with a significant increase in the number of cells to values close to control.


Keywords


low-level laser therapy; endothelial cell culture; t-PA; PAI-1; hyperglycemia

Full Text:

PDF

References


van den Oever IAM, Raterman HG, Nurmohamed MT, Simsek S. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm 2010;2010:792393. doi:10.1155/2010/792393.

Donnini D, Del Terra E, Ambesi-Impiombato FS, Curcio F. New in vitro model to study high glucose-dependent endothelial dysfunctions. Biochimie 2003;85(7):701-5.

Tjärnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke 2012;43(10):2833-9.

Dai H, Yu Z, Fan X, Liu N, Yan M, Chen Z, et al. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thromb Haemost 2013;109(6):1070-8.

Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JCM, Hoekstra JBL. Hyperglycaemia: a prothrombotic factor? J Thromb Haemost 2010;8(8):1663-9.

Galajada P, Martinka E, Kubisz P, Stasko J, Mokan M. Tissue plasminogen activator and diabetes mellitus. Vnitr Lek 1998;44(11):661-4.

Geppert A, Graft S, Beckmann R, Hornykewycz S, Schuster E, Binder BR, et al. Concentration of endogenous t-PA antigen in coronary artery disease: relation to thrombotic events, aspirin treatment, hyperlipidemia, and multivessel disease. Arterioscler Thromb Vasc Biol 1998;18(10):1634-42.

Knudsen EC, Seljeflot I, Abdelnoor M, Eritsland J, Mangschau A, Müller C, et al. Elevated levels of PAI-1 activity and t-PA antigen are associated with newly diagnosed abnormal glucose regulation in patients with ST-elevation myocardial infarction. J Thromb Haemost 2011;9(8):1468-74.

Thögersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, Huhtasaari F, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998;98(21):2241-7.

Harte AL, McTernan PG, McTernan CL, Smith SA, Barnett AH, Kumar S. Rosiglitazone inhibits the insulin-mediated increase in PAI-1 secretion in human abdominal subcutaneous adipocytes. Diabetes Obes Metab 2003;5(5):302-10.

Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 2009;16(1):4. doi:10.1186/1423-0127-16-4.

Yanaka M, Honma T, Sato K, Shinohara N, Ito J, Tanaka Y, et al. Increased monocytic adhesion by senescence in human umbilical vein endothelial cells. Biosci Biotechnol Biochem 2011;75(6):1098-103.

Hendudari F, Piryaei A, Hassani SN, Darbandi H, Bayat M. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium. Lasers Med Sci 2016;31(4):749-57.

Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 2017;37(8):1446-52.

Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg 2010;28(2):159-60.

Wang X, Tian F, Soni SS, Gonzales-Lima F, Liu H. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 2016;6:30540.

Kajagar BM, Godhi AS, Pandit A, Khatri S. Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers – a randomised control trial. Indian J Surg 2012;74(5):359-63.

Góralczyk K, Szymańska J, Szot K, Fisz J, Rość D. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 2016;31(5):825-31.

Gryko Ł, Gilewski M, Szymańska J, Zając A, Rość D. The concept of the set to objectification of LLLT exposure. Proceedings of SPIE: Laser Technology 2012. App Lasers 2013;8703:870302.

Basso FG, Oliveira CF, Kurachi C, Hebling J, de Souza Costa CA. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 2013;28(2):367-74.

Collen D, Lijnen HR. Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2004;2(4):541-6.

Gils A, Declerck PJ. Plasminogen activator inhibitor-1. Curr Med Chem 2004;11(17):2323-34.

Yamagishi S, Nakamura K, Matsui T, Ueda S, Noda Y, Imaizumi T. Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc Ther 2008;26(1):50-8.

Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 2009;94(9):3171-82.

Pandolfi A, Iacoviello L, Capani F, Vitacolonna E, Donati MB, Consoli A. Glucose and insulin independently reduce the fibrinolytic potential of human vascular smooth muscle cells in culture. Diabetologia 1996;39(12):1425-31.

Zhang J, Zhang X, Li H, Cui X, Guan X, Tang K, et al. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res 2013;10(1):49-56.

Chen H, Wan Y, Zhou S, Lu Y, Zhang Z, Zhang R, et al. Endothelium-specific SIRT1 overexpression inhibits hyperglycemia-induced upregulation of vascular cell senescence. Sci China Life Sci 2012;55(6):467-73.

Rocha Jr AM, Vieira BJ, de Andrade LC, Aarestrup FM. Effects of low-level laser therapy on the progress of wound healing in humans: the contribution of in vitro and in vivo experimental studies. J Vasc Bras 2007;6(3):258-66.

Feitosa MCP, Carvalho AFM, Feitosa VC, Coelho IM, Oliveira RA, Arisawa EAL. Effects of the low-level laser therapy (LLLT) in the process of healing diabetic foot ulcers. Acta Cir Bras 2015;30(12):852-7.

Silveira PC, da Silva LA, Pinho CA, De Souza PS, Ronsani MM, da Luz Scheffer D, et al. Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 2013;28(2):431-6.

Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 2018;33(5):1085-93. doi: 10.1007/s10103-017-2432-2.

Houreld N, Abrahamse H. Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med Sci 2008;23(1):11-8.

Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj 2017;1861(2):441-9.




DOI: https://doi.org/10.21164/pomjlifesci.728

Copyright (c) 2021 Zbigniew Marek Ziętek

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/