Nanomaterials in dentistry – potential capabilities, applications, limitations and hazards. Review of the literature. Part 2

Bartosz Dalewski, Ewa Sobolewska, Bogumiła Frączak



Introduction: Nanotechnology has been established in dental specialities as a novel methodology for developing materials with enhanced physical properties and antimicrobial potential. In this review, we discuss the current progress, prospects, and potential future applications of functional nanoparticles contained in nanomaterials as useful strategies for refining their ability to resist occlusal forces, as well as oral biofilm management. We also provide an overview of the suggested antimicrobial mechanisms for these nanoparticles.

The purpose of this study was to use an evidence-based approach to assess the possible applications of nanomaterials in various fields in contemporary and potential future dentistry.

Methods: A comprehensive search of Medline (PubMed) and the ISI Web of Science database was carried out.

Results: Nanomaterials have significant potential for decreasing bacterial biofilm accumulation, inhibiting the demineralization process, remineralizing dental tissues, and combating caries-related bacteria. However, their ability to withstand intraoral forces needs to be further improved.

Conclusions: The results reviewed in this work present a bright outlook and open doors for future clinical studies that will allow admission of the therapeutic value of nanotechnology-based dental materials.


acrylic resins; graphene; nanocomposites; nanoparticles; silver


Akbari M, Zebarjad SM, Nategh B, Rouhani A. Effect of nano silica on setting time and physical properties of mineral trioxide aggregate. J Endod 2013;39(11):1448-51. doi: 10.1016/j.joen.2013.06.035.

Saghiri MA, Godoy FG, Gutmann JL, Lotfi M, Asatourian A, Sheibani N, et al. The effect of pH on solubility of nano-modified endodontic cements. J Conserv Dent 2014;17(1):13-7. doi: 10.4103/0972-0707.124096.

Javidi M, Zarei M, Naghavi N, Mortazavi M, Nejat AH. Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemp Clin Dent 2014;5(1):20-4. doi: 10.4103/0976-237X.128656.

Monzavi A, Eshraghi S, Hashemian R, Momen-Heravi F. In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens. Clin Oral Investig 2015;19(2):349-56. doi: 10.1007/s00784-014-1253-y.

Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006;48(3):171-6.

Kassaee MZ, Akhavan A, Sheikh N, Sodaga A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appli Polym Sci 2008;110:1699-3. doi: 10.1002/app.28762.

Subba Rao CVS, Vanajasan PP, Chandana VS. Scope of biomaterials in conservative dentistry and endodontics. Trends Biomater Artif Organs 2011;25:75-8.

Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, Cajero-Juárez M, Castaño VM. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine 2012;7:4777. doi: 10.2147/IJN.S32391.

Ghaffari T, Hamedi-rad F. Effect of Silver nano-particles on tensile strength of acrylic resins. J Dent Res Dent Clin Dent Prospects 2015;9(1):40-3. doi: 10.15171/joddd.2015.008.

Lee WF, Tsao KT. Preparation and properties of nanocomposite hydrogels containing silver nanoparticles by ex situ polymerization. J Appli Polym Sci 2006;100:3653-61. doi: 10.1002/app.23171.

Lee C, Lee M, Nam K. Inhibitory Effect of PMMA denture acrylic impregnated by silver nitrate and silver nano-particles for Candida albicans. J Korean Chem Soc 2008;52:380-6.

Boldyryeva H, Umeda N, Plaskin QA, Takeda Y, Kishimoto N. Highfluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Tech 2005;196:373-7. doi: 10.1016/j.surfcoat.2004.08.159.

Casemiro LA, Martins CHG, Pires‐de‐Souza FC. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite – Part 1. Gerodontology 2008;25:187-94. doi: 10.1111/j.1741-2358.2007.00198.x.

Busscher HJ, Rinastiti M, Siswomihardjo W, Mei HC. The use of nanoparticles to control oral biofilm formation. J Dent Res 2010;89:657-65. doi: 10.1177/0022034510368644.

Giertsen E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004;38:430-5. doi: 10.1159/000079623.

Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A. Characterization of antibacterial silver coated yarns. J Mater Sci – Mater Med 2009;20(11):2361-6. doi:10.1007/s10856-009-3796-z.

Chladek G, Mertas A, Barszczewska-Rybarek I, Nalewajek T. Antifungal activity of denture soft lining material modified by silver nanoparticles – a pilot study. Int J Mol Sci 2011;12(7):4735-44. doi: 10.3390/ijms12074735.

Chladek G, Barszczewska-Rybarek I, Lukaszczyk J. Developing the procedure of modifying the denture soft liner by silver nanoparticles. Acta Bioeng Biomech 2012;14(1):23-9.

Chladek G, Kasperski J, Barszczewska-Rybarek I, Żmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci 2013;14(1):563-74. doi: 10.3390/ijms14010563.

Monteiro DR, Silva S, Negri M, Gorup LF. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses 2013;56:672-80. doi: 10.1111/myc.12093.

Nam KY, Lee CH, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 2011;29:e413-9. doi: 10.1111/j.1741-2358.2011.00489.x.

Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont 2011;20(4):251-60. doi: 10.1111/j.1532-849X.2011.00698.x.

Wang WG, Sun X, Huang L, Gao Y, Ban JH, Shen LJ, et al. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes. Int J Nanomedicine 2014;9:841-52. doi: 10.2147/IJN.S56062.

Melo M, Cheng L, Zhang K. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater 2013;29(2):199-210. doi: 10.1016/

Melo M, Cheng L, Weir MD. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2013;101B:620-9. doi: 10.1002/jbm.b.32864.

Zhang XY, Zhang XJ, Huang ZL, Zhu BS, Chen RR. Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dent Mater J 2014;33(1):141-6. doi: 10.4012/dmj.2013-054.

Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: Influence on physical and antibacterial properties. J Dent 2011;39:589-98. doi: 10.1016/j.jdent.2011.05.006.

Pinnavia TJ, Beal GW. Polimer clay – nanocomposites. Chichester: John Wiley & Sons; 2000. p. 3-263.

Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 2000;41:3887-90. doi: 10.1016/S0032-3861(99)00655-2.

Tabtiang A, Lumlong S, Venables RA. Influence of preparation method upon the structure and relaxation characteristics of poly(methyl methacrylate)/clay composites. Eur Polym J 2000;36:2559-68. doi: 10.1016/S0014-3057(00)00061-6.

Gao Z, Xie W, Hwu JM, Wells L, Pan WP. The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Cal 2001;64:467-75. doi: 10.1023/A:1011514110413.

Spychaj S, Spychaj T, Sobolewska E, Frączak B, Ey-Chmielewska H, Sniegowska I. The influence of nanofillers on the properties of dental acrylic composites. Eng Biomater 2007;10(62):18-25.

Sobolewska E, Spychaj S, Zieliński P, Frączak B, Ey-Chmielewska H. Influence of modified bentonitee addition on acrylic nanocomposite properties. Eng Biomater 2004;7(37):21-7.

Segerström S, Sandborgh-Englund G, Ruyter EI. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures. Eur J Oral Sci 2011;119:246-52. doi: 10.1111/j.1600-0722.2011.00826.x.

Östman PO, Hupalo M, Del Castillo R. Immediate provisionalization of nanotite implants in support of single-tooth and unilateral restorations: one-year interim report of a prospective, multicenter study. Clin Implant Dent Relat Res 2009;12:e47-e55. doi: 10.1111/j.1708-8208.2009.00166.x.

Göncü Basaran E, Ayna E, Vallittu PK, Lassila LV. Load-bearing capacity of handmade and computer-aided design–computer-aided manufacturing-fabricated three-unit fixed dental prostheses of particulate filler composite. Acta Odontol Scand 2011;69(3):144-50. doi: 10.3109/00016357.2010.545034.

Qiu L, Chen Y, Yang Y, Xu L, Liu X. A study of surface modifications of carbon nanotubes on the properties of polyamide 66/multiwalled carbon nanotube composites. J Nanomater 2013;2013:Article ID 252417. doi: 10.1155/2013/252417.

Uzun G, Keyf F. The effect of fiber reinforcement type and water storage on strength properties of a provisional fixed partial denture resin. J Biomater Appl 2003;17(4):277-86. doi: 10.1177/0885328203017004003.

Rached RN, Souza EM, Dyer SR, Ferracane JL. Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners. J Prosthet Dent 2011;106(5):297-304. doi: 10.1016/S0022-3913(11)60134-0.

Stafford GD, Hugget R, MacGregor AR, Graham J. The use of nylon as a denture-base material. J Dent 1986;14:18-22. doi: 10.1016/0300-5712(86)90097-7.

Waltimo T, Brunner TJ, Vollenweider M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 2007;86:754-7. doi: 10.1177/154405910708600813.

Zhao J, Xie D. Effect of nanoparticles on wear resistance and surface hardness of a dental glass-ionomer cement. J Compos Mater 2009;43:2739-51. doi: 10.1177/0021998309345341.

Sumita M, Shizuma T, Miyasakaand K, Ishikawa K. Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci B Phys 1983;22:601-18. doi: 10.1080/00222348308224779.

Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 2005;90:185-95. doi: 10.1016/j.matchemphys.2004.10.009.

Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dental Mater J 2011;30(2):222-31. doi: 10.4012/dmj.2010-135.

Castranova V, Schulte PA, Zumwalde RD. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 2013;19;46(3):642-9. doi: 10.1021/ar300004a.

Lam CW, James JT, McCluskey R. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006;36(3):189-217. doi: 10.1080/10408440600570233.

Murray AR, Kisin ER, Tkach AV. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 2012;10(9):10. doi: 10.1186/1743-


Chatterjee N, Eom HJ, Choi J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 2014;35(4):1109-27. doi: 10.1016/j.biomaterials.2013.09.108.

Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine 2011;6(2):317-24. doi: 10.2217/nnm.10.158.

Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 2014;10(8):1544-54. doi: 10.1002/smll.201303234.

He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, et al. Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces 2015;7(9):5605-11. doi: 10.1021/acsami.5b01069.

Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 2014;30(10):1281-94. doi: 10.1080/08927014.2014.983093.

Lee JH, Shin YC, Jin OS, Kang SH, Hwang YS, Park JC, et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2015;7(27):11642-51. doi: 10.1039/c5nr01580d.

Kanayama I, Miyaji H, Takita H. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. Int J Nanomedicine 2014;9:3363-73. doi:10.2147/IJN.S62342.

Kohgo T, Yamada Y, Ito K, Yajima A, Yoshimi R, Okabe K, et al. Bone regeneration with self-assembling peptide nanofiber scaffolds in tissue engineering for osseointegration of dental implants. Int J Periodontics Restorative Dent 2011;31(4):e9-16.

Li H, Yang L, Dong X, Gu Y, Lv G, Yan Y. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. J Mater Sci – Mater Med 2014;25(5):1257-65. doi: 10.1007/s10856-014-5164-x.

Kato E, Sakurai K, Yamada M. Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment. Dent Mater 2015;31(5):e116-30. doi: 10.1016/

Frost PM. An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care 2002;9:31-6.

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 2010;8:1. doi: 10.1186/1477-3155-8-1.

Borkow G, Lapidot A. Multi-targeting the entrance door to block HIV-1. Curr Drug Targets Infect Disord 2005;5:3-15. doi: 10.2174/1568005053174645.

Al-Jabri AA, Alenzi FQ. Vaccines, virucides and drugs against HIV/AIDS: hopes and optimisms for the future. Open AIDS J 2009;3:1-3. doi: 10.2174/1874613600903010001.

Giertsen E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004;38:430-5. doi: 10.1159/

Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A. Characterization of antibacterial silver coated yarns. J Mater Sci – Mater Med 2009;20(11):2361-6. doi: 10.1007/s10856-009-3796-z.

Chladek G, Mertas A, Barszczewska-Rybarek I, Nalewajek T. Antifungal activity of denture soft lining material modified by silver nanoparticles – a pilot study. Int J Mol Sci 2011;12(7):4735-44. doi: 10.3390/ijms

Chladek G, Barszczewska-Rybarek I, Lukaszczyk J. Developing the procedure of modifying the denture soft liner by silver nanoparticles. Acta Bioeng Biomech 2012;14(1):23-9.

Huang Z, Sargeant TD, Hulvat JF, Mata A, Bringas P Jr, Koh CY, et al. Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J Bone Miner Res 2008;23:1995-2006.

Lee SJ, Atala A. Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater 2013;8(1):010201. doi: 10.1088/1748-6041/8/1/010201.

Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007;59:308-24.

Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013;8(1):014102. doi: 10.1088/1748-6041/8/1/014102.

Kasaj A, Willershausen B, Reichert C, Rohrig B, Smeets R, Schmidt M. Ability of nanocrystalline hydroxyapatite to promote human periodontal ligament cell proliferation. J Oral Sci 2008;50:279-85.

Inamdar NK, Borenstein JT. Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 2011;22:681-9.

Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A 2006;79:176-84.

Kohli P, Martin C. Smart nanotubes for biomedical and biotechnological applications. Drug News Perspect 2003;16:566-73.

Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 2007;57:97-101. doi: 10.1016/j.colsurfb.2007.01.010.

Zuhuang J. Bactericidal nanosilver cloth and its making process and use. Patent number CN 1387700. 2003.

Goffeau A. Drug resistance: the fight against fungi. Nature 2008;452:541-2. doi: 10.1038/452541a.

Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 2004;12:288-94. doi: 10.1111/j.1067-1927.2004.012304.x.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86. doi: 10.1021/la0202374.

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007;27:1712-20. doi: 10.1128/AEM.02218-06.

Giertsen E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004;38:430-5. doi: 10.1159/000079623.

Chaloupka K, Malam Y, Seifalian AS. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 2010;28:580-8. doi: 10.1016/j.tibtech.2010.07.006.

You C, Han C, Wang X. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 2012;39(9):9193-201. doi: 10.1007/s11033-012-1792-8.

Arora S, Jain J, Rajwade JM, Paknikar KM. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 2009;236:310-8. doi: 10.1016/j.taap.2009.02.020.

Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008;19(25):255102. doi: 10.1088/0957-4484/19/25/255102.

Asharani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009;3(2):279-90. doi: 10.1021/nn800596w.

Melnik EA, Yu P, Buzulukov V, Demin F, Demin VA, Gmoshinski IV, et al. Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae 2013;5(3):107-15.

Freitas MPM, Oshima HMS, Menezes LM. Release of toxic ions from silver solder used in orthodontics: An in-situ evaluation. Am J Orthod Dentofacial Orthop 2011;140(2):177-81. doi: 10.1016/j.ajodo.2010.06.024.

Freitas MPM, Oshima HMS, Menezes LM. Cytotoxicity of silver solder employed in orthodontics. Angle Orthod 2009;79:939-44. doi: 10.2319/101108-530.1.

Elshahawy W, Watanabe I, Koike M. Elemental ion release from four different fixed prosthodontic materials. Dent Mater 2009;25:976-81. doi: 10.1016/

Sha B, Gao W, Wang S, Li W, Liang X, Xu F, et al. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food Chem Toxicol 2013;58:280-8.

Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater 2011;27:487-96. doi: 10.1016/


Copyright (c) 2018

License URL: