Nanomaterials in dental specialities – an evolving perspective? Review article. Part 1

Bartosz Dalewski, Ewa Sobolewska, Bogumiła Frączak


Introduction: Nanotechnology has been established in dental specialities as a novel methodology for developing materials with enhanced physical properties and antimicrobial potential. In this review we discuss the current progress, prospects, and possible future applications of functional nanoparticles contained in nanomaterials as useful strategies for refining their ability to resist occlusal forces, as well as oral biofilm management. We also provide an overview of the suggested antimicrobial mechanisms for these nanoparticles.

The purpose of this study was to use an evidence-based approach to assess the possible applications of nanomaterials in various fields in contemporary and potential future dentistry.

Methods: A comprehensive database search was implemented by using Medline (PubMed) and ISI Web of Science.

Results: Nanomaterials have significant potential for decreasing bacterial biofilm accumulation, inhibiting the demineralization process, remineralising tooth tissues, and combating caries-related bacteria. However, their ability to withstand intraoral forces needs to be further improved.

Conclusions: The results reviewed in this work present a bright outlook and open doors for future clinical studies that will allow the admission of the therapeutic value of nanotechnology-based dental materials.


acrylic resins; graphene; nanocomposites; nanoparticles; silver

Full Text:



Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 2012;26(3):143-51. doi: 10.7555/JBR.26.20120027.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86. doi: 10.1021/la0202374.

Dental resin composites and caries. National Institute of Dental and Craniofacial Research; 2009.

American Dental Association (ADA). The 1999 survey of dental services rendered. Chicago (IL): ADA Survey Center; 2002.

Ferracane JL. Resin composite – state of the art. Dent Mater 2011;27:29-38.

Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc 1998;129:567-77.

Lim BS, Ferracane JL, Condon JR, Adey JD. Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 2002;18:1-11.

Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006;22:211-22.

Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 2008;87:710-19.

Ye Q, Park J, Topp E, Spencer P. Effect of photoinitiators on the in vitro performance of a dentin adhesive exposed to simulated oral environment. Dent Mater 2009;25:452-8.

Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater 2009;25:1030-8.

Ruddell DE, Maloney MM, Thompson JY. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dent Mater 2002;18:72-80.

Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003;19(6):449-57.

Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development. Dent Mater 2003;19:1-11.

Lu H, Stansbury JW, Bowman CN. Impact of curing protocol on conversion and shrinkage stress. J Dent Res 2005;84:822-6.

Xu X, Ling L, Wang R, Burgess JO. Formation and characterization of a novel fluoride-releasing dental composite. Dent Mater 2006;22:1014-23.

Krämer N, García-Godoy F, Reinelt C, Frankenberger R. Clinical performance of posterior compomer restorations over 4 years. Am J Dent 2006;19:61-6.

Wan Q, Sheffield J, McCool J, Baran GR. Light curable dental composites designed with colloidal crystal reinforcement. Dent Mater 2008;24:1694-701.

Park JG, Ye Q, Topp EM, Misra A, Spencer P. Water sorption and dynamic mechanical properties of dentin adhesives with a urethane-based multifunctional methacrylate monomer. Dent Mater 2009;25:1569-75.

Fan C, Chu L, Rawls HR, Norling BK, Cardenas HL, Whang K. Development of an antimicrobial resin – a pilot study. Dent Mater 2011;27:322-8.

Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: Clinical, chemistry, and physical behavior considerations. Dent Mater 2005;21:3-6.

Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005;21:9-20.

Frost PM. An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care 2002;9:31-6.

Mjör IA, Moorhead JE, Dahl JE. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 2000;50:361-6.

Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HHK. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2012;100(5):1264-73. doi:10.1002/jbm.b.32691.

Melo M, Guedes S, Hockin H, Xu K, Rodrigues KA. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol 2013;31(8):459-67. doi: 10.1016/j.tibtech.2013.05.010.

Jandt D, Klaus JD, Sigusch Bernd WS. Future perspectives of resin-based dental materials. Dent Mater 2009;25:1001-6. doi: 10.1016/

Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 2003;134:1382-90. doi: 10.14219/jada.archive.2003.0054.

Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 2007;18:604-11. doi: 10.1088/0957-4484/18/28/285604.

Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 2006;29:95-9. doi: 10.1016/j.optmat.2006.03.014.

Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 2003;3:1261-3. doi: 10.1021/nl034396z.

Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 2008;400:396-414. doi: 10.1016/j.scitotenv.2008.06.042.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 2007;3:95-101. doi: 10.1016/j.nano.2006.12.001.

Yoshida Y, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 1999;47:516-22.

Zhang K, Melo M, Cheng L, Weir MD, Bai Y, Xu HK. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater 2012;28(8):842-52. doi: 10.1016/

Cheng L, Zhang K, Melo M, Weir MD, X. Zhou X, Xu HH. Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res 2012;91(6):598-604. doi: 10.1177/0022034512444128.

Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008;279:71-6. doi: 10.1111/j.1574-6968.2007.01012.x.

Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011;77(7):2325-31. doi: 10.1128/AEM.02149-10.

Vyom S, Ritesh KS, Neha S, Devendra P, Mukul D, Alok D. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009;185(3):211-8. doi: 10.1016/j.toxlet.2009.01.008.

Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 2010;44:5649-54. doi: 10.1021/es101072s.

Peng JJY, Botelho MG, Matinlinna JP. Silver compounds used in dentistry for caries management: a review. J Dent 2012;40:531-41. doi: 10.1016/j.jdent.2012.03.009.

Radzig MA, Nadtochenko VA, Koksharova OA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 2013;102:300-6. doi: 10.1016/j.colsurfb.2012.07.039.

Seth D, Choudhury SR, Pradhan S. Nature-inspired novel drug design paradigm using nanosilver: Efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 2011;62:715-26. doi: 10.1007/s00284-010-9770-7.

Espinosa-Cristóbal LF. Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Mater Sci Eng C 2012;32:896-901. doi: 10.1016/j.msec.2012.02.009.

Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25:206-13. doi: 10.1016/

Durner J, Stojanovic M, Urcan E, Hickel R, Reichl FX. Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater 2011;27:631-6. doi: 10.1016/

Cheng L, Weir MD, Xu HHK, Antonucci JM. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 2012;28:561-72. doi: 10.1016/

Cheng L, Weir MD, Xu HHK. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater 2012;100:1378-86. doi: 10.1002/jbm.b.32709.

Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ Sci Technol 2011;45:3367-73. doi: 10.1021/es103450g.

Damm C, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver nanocomposites. J Mater Sci 2007;42:6067-73. doi: 10.1007/s10853-006-1158-5.

Fan W, Wu D, Ma T, Fan B. Ag-loaded mesoporous bioactive glasses against Enterococcus faecalis biofilm in root canal of human teeth. Dent Mater J 2015;34(1):54-60. doi: 10.4012/dmj.2014-104.

Izamato S, Ma S, Chen J. Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dent Mater 2014;30(1):97-104. doi: 10.1016/

Fayaz AM, Balaji K, Girila M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 2010;6:103-9. doi: 10.1016/j.nano.2009.04.006.

Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater 2013;101(6):929-38. doi: 10.1002/jbm.b.32898.

Imazato S, Chen J, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev 2012;48(2):115-25. doi: 10.1016/j.jdsr.2012.02.003.

Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 2003;134(10):1382-90. doi: 10.14219/jada.archive.2003.0054.

Li F, Weir MD, Chen J, Xu HHK. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater 2014;30(4):433-41. doi:10.1016/

Stephen KW. Dentifrices: recent clinical findings and implications for use. Int Dent J 1993;43(6 S1):549-53. (23.03.2017).

Du M, Zheng Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Poly Compos 2007;28:198-207. doi: 10.1002/pc.20377.

Manhart J, Kunzelman KH, Chen HY, Hickel R. Mechanical properties and wear behaviour of light-cured packable composite resins. Dent Mater 2000;16:33-40. doi: 10.1016/S0109-5641(99)00082-2.

Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res 2010;89:1175-86. doi: 10.1177/0022034510377794.

Reddy PS, Tejaswi KL, Shetty S, Annapoorna BM, Pujari SC, Thippeswamy HM. Effects of commonly consumed beverages on surface roughness and color stability of the nano, microhybrid and hybrid composite resins: an in vitro study. J Contemp Dent Pract 2013;14(4):718-23.

Chen L, Xu C, Wang Y, Shi J, Yu Q, Li H. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion. Biomed Mater Eng 2012;7(4):045014. doi:10.1088/1748-6041/7/4/045014.

Lu X, Xia Y, Liu M, Qian Y, Zhou X, Gu N, et al. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly. Int J Nanomedicine 2012;7:2153-64. doi: 10.2147/IJN.S29851.


Copyright (c) 2017

License URL: