An analysis of the results of genetic paternity tests performed for judicial purposes in the years 2018–2023 at the Chair and Department of Forensic Medicine of the Medical University of Warsaw

Krzysztof Żak, Magdalena Konarzewska, Anna Fiedorowicz, Victoria Prokopowicz, Ireneusz Sołtyszewski

Abstract


Introduction: In legal paternity cases, genetic testing holds crucial evidential value. The standard practice involves the participation of the mother, child, and alleged father in these tests. There is an approach that considers the child’s mother’s profile unnecessary for such tests. While testing fewer participants may be cost-effective, it is essential to obtain clear and conclusive results. Therefore, it is worth examining whether the absence of the mother’s profile in the tests negatively impacts the results of kinship analysis.
Materials and methods: The results of disputed paternity genetic tests that included the mother, child, and alleged father were evaluated. These tests were conducted between 2018–2023 at the Department of Forensic Medicine of the Medical University of Warsaw. Genetic profiles were obtained using the PowerPlex® Fusion 6C System reagent kit (Promega, USA).
Results: Analysis of 557 paternity tests revealed that 148 cases resulted in the exclusion of paternity, 406 confirmed paternity, and 3 cases remained unsolved. Further analysis of cases with paternity exclusions showed inconsistencies in an average of 14 loci. The most frequently excluding marker was SE33, while TPOX had the weakest excluding strength. No false positive results were obtained in tests that included the mother’s profile, and the percentage of unresolved cases was 0.54%. When simulating the results without the mother’s profile, 5.21% of cases remained unresolved, and it was determined that a false positive result could occur.
Conclusions: The necessity of the mother’s participation in genetic paternity testing has been confirmed. Omitting the mother’s profile may lead to an inconclusive result or even an erroneous genetic opinion.

Keywords


paternity testing; STR loci; PowerPlex® Fusion 6C; excluding loci; false positive/negative paternity

Full Text:

PDF

References


Karpiewska A, Kowalczyk E, Dobosz T. Paternity testing at the Department of Forensic Medicine of Wroclaw Medical University (Poland). Leg Med (Tokyo) 2017;26:18-24.

Gręda A. Dowód z badań DNA w sprawach o ustalenie lub zaprzeczenie pochodzenia dziecka. Palestra 2015;3-4:69-79.

Babol-Pokora K, Jacewicz R, Pepinski W, Szram S. Is SGM Plus™ the sufficient system for paternity testing? Int Congr Ser 2006;1288:450-2.

Drábek J. Validation of software for calculating the likelihood ratio for parentage and kinship. Forensic Sci Int Genet 2009;3(2):112-8.

Egeland T, Kling D, Mostad P. Relationship inference with Familias and R. Statistical method in forensic genetics. Amsterdam: Elsevier; 2016.

Kling D, Mostad PF, Egeland T. Manual for Familias 3. 2017. https://familias.name/Files/manualFamilias.pdf (21.11.2024).

Zasady atestacji laboratoriów genetycznych przy Polskim Towarzystwie Medycyny Sądowej i Kryminologii na rok 2016. Polskie Towarzystwo Medycyny Sądowej i Kryminologii. http://www.ptmsik.pl/komisja-genetyki-sadowej/zasady-atestacji-na-rok-2016 (21.11.2024).

Relationship Testing. Technical report for testing in 2022. As compared to reported data from 2020 and 2021. Association for the Advancement of Blood & Biotherapies. https://www.aabb.org/docs/default-source/default-document-library/accreditation/2022-technical-report-summary.pdf?sfvrsn=4ef9c537_1 (21.11.2024).

Wójcik MA, Skawrońska M, Niemcunowicz-Janica A, Pepiński W. Analiza wykluczeń ojcostwa w materiale Zakładu Medycyny Sądowej Uniwersytetu Medycznego w Białymstoku w latach 2008–2017. Arch Med Sadowej Kryminol 2018;68(4):281-9.

De Kock AA, Kloppers JJ. The impact of motherless paternity testing in a South African population. Afr Health Sci 2021;21(1):379-84.

García-Aceves ME, Jasso-Razo DG, Díaz-Navarro XX, Rangel-Villalobos H. A posteriori parameters from paternity tests of a Mexican laboratory with the powerplex fusion system. Leg Med (Tokyo) 2023;64:102296.

Thelingwani RS, Jonhera CA, Masimirembwa C. Analysis of data and common mutations encountered during routine parentage testing in Zimbabwe. Sci Rep 2024;14:1385.

Plodthong N, Chareonsirisuthigul T, Lumjiaktase P, Rerkamnuaychoke B. Analysis of paternity testing results by Identifiler™ system in Thailand. Thai J Genet 2014;7(2):133-8.

Huang YM, Wang J, Jiao Z, Yang L, Zhang X, Tang H, et al. Assessment of application value of 19 autosomal short tandem repeat loci of GoldenEyeTM 20A kit in forensic paternity testing. Int J Legal Med 2013;127(3):587-90.

Lee HS, Lee JW, Han GR, Hwang JJ. Motherless case in paternity testing. Forensic Sci Int 2000;114(2):57-65.

Zhang MX, Gao HM, Han SY, Liu Y, Tian YL, Sun SH, et al. Risk analysis of duo parentage testing with limited STR loci. Genet Mol Res 2014;13(1):1179-86.

Aguiar VRC, de Castro AM, Pinto LM, Ferreira ACS, Dos Santos EVW, Louro ID. Assessing false paternity risk in simulated motherless cases from more than 20 000 real exclusion trios. Transfusion 2021;61(3):678-81.

Dogan M, Canturk KM, Emre R, Kara U, Filoglu G. Demonstration of false inclusion risks of duo parentage analyses in the Turkish population in light of parentage acceptance criteria. Aust J Forensic Sci 2017;49(3):326-31.

Bonar M, Czosnykowska M, Kowalczyk E, Dobosz T. Pomijanie matki w testach DNA ustalających ojcostwo może prowadzić do błędu. Przypadki Medyczne 2012;18:65-70.




DOI: https://doi.org/10.21164/pomjlifesci.1134

Copyright (c) 2025 Krzysztof Żak, Magdalena Konarzewska, Anna Fiedorowicz, Victoria Prokopowicz, Ireneusz Sołtyszewski

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/