The effects of e-cigarette aerosol components on the morphology and function of the conducting portion of the respiratory system: a narrative literature review

Paweł Szumilas, Kamila Szumilas, Aleksandra Wilk, Alicja Zawiślak, Beata Karakiewicz

Abstract


As electronic cigarettes (e-cigarettes, vaping, etc.) are considered a safer alternative to traditional smoking, they are gaining popularity, especially among adolescents (10–14 and 14–18 years) and young adults (18–25 years). They are used by millions of users worldwide, and new generations of e-cigarette devices are being introduced. Some reports have suggested that e-cigarettes have harmful effects on human health, which is why it is important to introduce restrictions on the use of e-cigarettes by young people. The aerosols produced when the e-liquid is heated contain a complex of gases, toxic substances and various types of flavoring chemicals, which are then inhaled by users. In addition, when the products in the e-liquid are thermally degraded, more harmful reactive substances are produced. Exposure to e-cigarette aerosols appears to have harmful effects on human health, but it is critical that our understanding of these effects be expanded and that data be collected on the long-term effects of the substances in e-cigarette aerosols on the human body. Data on the various health risks associated with the use of e-cigarettes are mainly based on in vitro studies using established cell lines or cultured human cells, or on animal models. The substances contained in e-cigarette liquids and their aerosol – including the solvents propylene glycol and vegetable glycerin – are known to cause organ and tissue irritation in the upper respiratory tract when inhaled. The aim of this narrative review is to present our current knowledge on the effects of the chemical components of e-cigarette aerosols on the nasal cavity, trachea, bronchi, and organs of the conducting part of the respiratory system.

Keywords


e-cigarettes; e-aerosol; chemical components; ciliated columnar pseudostratified epithelium

Full Text:

PDF

References


Bhatt JM, Ramphul M, Bush A. An update on controversies in e-cigarettes. Paediatr Respir Rev 2020;36:75-86. doi: 10.1016/j.prrv.2020.09.003.

Perez MF, Crotty Alexander LE. Why Is Vaping Going Up in Flames? Ann Am Thorac Soc 2020;17(5):545-9. doi: 10.1513/AnnalsATS.201910-802PS.

Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, et al. The chemistry and toxicology of vaping. Pharmacol Ther 2021;225:107837. doi: 10.1016/j.pharmthera.2021.107837.

Eshraghian EA, Al-Delaimy WK. A review of constituents identified in e-cigarette liquids and aerosols. Tob Prev Cessat 2021;7:10. doi: 10.18332/tpc/131111.

Kaur G, Pinkston R, McLemore B, Dorsey WC, Batra S. Immunological and toxicological risk assessment of e-cigarettes. Eur Respir Rev 2018;27(147):170119. doi: 10.1183/16000617.0119-2017.

Son Y, Khlystov A. An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols. Front Chem 2021;9:764730. doi: 10.3389/fchem.2021.764730.

Li Y, Burns AE, Tran LN, Abellar KA, Poindexter M, Li X, et al. Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chem Res Toxicol 2021;34(6):1640-54. doi: 10.1021/acs.chemrestox.1c00070.

Uchiyama S, Noguchi M, Sato A, Ishitsuka M, Inaba Y, Kunugita N. Determination of Thermal Decomposition Products Generated from E-Cigarettes. Chem Res Toxicol 2020;33(2):576-83. doi: 10.1021/acs.chemrestox.9b00410.

Behar RZ, Davis B, Wang Y, Bahl V, Lin S, Talbot P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol In Vitro 2014;28(2):198-208. doi: 10.1016/j.tiv.2013.10.006.

Salam S, Saliba NA, Shihadeh A, Eissenberg T, El-Hellani A. Flavor-Toxicant Correlation in E-cigarettes: A Meta-Analysis. Chem Res Toxicol 2020;33(12):2932-8. doi: 10.1021/acs.chemrestox.0c00247.

Marques P, Piqueras L, Sanz MJ. An updated overview of e-cigarette impact on human health. Respir Res 2021;22(1):151. doi: 10.1186/s12931-021--01737-5.

Li L, Lin Y, Xia T, Zhu Y. Effects of Electronic Cigarettes on Indoor Air Quality and Health. Annu Rev Public Health 2020;41:363-80. doi: 10.1146/annurev-publhealth-040119-094043.

Farsalinos KE, Polosa R. Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review. Ther Adv Drug Saf 2014;5(2):67-86. doi: 10.1177/2042098614524430.

Hussain S, Shahid Z, Foroozesh MB, Sofi UF. E-cigarettes: A novel therapy or a looming catastrophe. Ann Thorac Med 2021;16(1):73-80. doi: 10.4103/atm.ATM_190_20.

Kar M, Emre IE, Bayar Muluk N, Cingi C. Effect of Electronic Cigarettes on the Inner Mucosa of the Craniofacial Region. J Craniofac Surg 2019;30(3):e235-38. doi: 10.1097/scs.0000000000005190.

Trucco EM. A review of psychosocial factors linked to adolescent substance use. Pharmacol Biochem Behav 2020;196:172969. doi: 10.1016/j.pbb.2020.172969.

Jones K, Salzman GA. The Vaping Epidemic in Adolescents. Mo Med 2020;117(1):56-8.

Khlystov A, Samburova V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ Sci Technol 2016;50(23):13080-5. doi: 10.1021/acs.est.6b05145.

Sapru S, Vardhan M, Li Q, Guo Y, Li X, Saxena D. E-cigarettes use in the United States: reasons for use, perceptions, and effects on health. BMC Public Health 2020;20(1):1518. doi: 10.1186/s12889-020-09572-x.

Szumilas K, Szumilas P, Grzywacz A, Wilk A. The Effects of E-Cigarette Vapor Components on the Morphology and Function of the Male and Female Reproductive Systems: A Systematic Review. Int J Environ Res Public Health 2020;17(17):6152. doi: 10.3390/ijerph17176152.

Nagpal TS, Green CR, Cook JL. Vaping During Pregnancy: What Are the Potential Health Outcomes and Perceptions Pregnant Women Have? J Obstet Gynaecol Can 2021;43(2):219-26. doi: 10.1016/j.jogc.2020.05.014.

Delles C, Olfert IM. Electronic cigarettes: how bad are they for your health? Cardiovasc Res 2020;116(6):e64-6. doi: 10.1093/cvr/cvaa041.

Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006;34(3):252-69. doi: 10.1080/01926230600713475.

Rha MS, Kim CH. Are Electronic Cigarettes Harmful? Mucin May Be the Key. Clin Exp Otorhinolaryngol 2021;14(3):249250.

Aziz A, Md Shukri N, Ramli RR. Vape Till Your Nose Bleed. J Med 2017;18(1):47-51. doi: 10.3329/jom.v18i1.31178.

Scheibein F, McGirr K, Morrison A, Roche W, Wells JSG. An exploratory non-randomized study of a 3-month electronic nicotine delivery system (ENDS) intervention with people accessing a homeless supported temporary accommodation service (STA) in Ireland. Harm Reduct J 2020;17(1):73. doi: 10.1186/s12954-020-00406-y.

Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E, Benowitz NL, et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2016;311(1):L135-44. doi: 10.1152/ajplung.00170.2016.

Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, et al. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021;64(1):126-37. doi: 10.1165/rcmb.2020-0164OC.

Higham A, Rattray NJ, Dewhurst JA, Trivedi DK, Fowler SJ, Goodacre R, et al. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir Res 2016;17(1):56. doi: 10.1186/s12931-016-0368-x.

Wu Q, Jiang D, Minor M, Chu HW. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One 2014;9(9):e108342. doi: 10.1371/journal.pone.0108342.

Kumral TL, Saltürk Z, Yildirim G, Uyar Y, Berkiten G, Atar Y, et al. How does electronic cigarette smoking affect sinonasal symptoms and nasal mucociliary clearance? B-ENT 2016;12(1):17-21.

Rouabhia M, Piché M, Corriveau MN, Chakir J. Effect of e-cigarettes on nasal epithelial cell growth, Ki67 expression, and pro-inflammatory cytokine secretion. Am J Otolaryngol 2020;41(6):102686. doi: 10.1016/j.amjoto.2020.102686.

Song SY, Na HG, Kwak SY, Choi YS, Bae CH, Kim YD. Changes in Mucin Production in Human Airway Epithelial Cells After Exposure to Electronic Cigarette Vapor With or Without Nicotine. Clin Exp Otorhinolaryngol 2021;14(3):303-11. doi: 10.21053/ceo.2020.01907.

Kwak S, Choi YS, Na HG, Bae CH, Song SY, Kim YD. Glyoxal and Methylglyoxal as E-cigarette Vapor Ingredients-Induced Pro-Inflammatory Cytokine and Mucins Expression in Human Nasal Epithelial Cells. Am J Rhinol Allergy 2021;35(2):213-20. doi: 10.1177/1945892420946968.

Ajmani GS, Suh HH, Wroblewski KE, Pinto JM. Smoking and olfactory dysfunction: A systematic literature review and meta-analysis. Laryngoscope 2017;127(8):1753-61. doi: 10.1002/lary.26558.

Siegel JK, Wroblewski KE, McClintock MK, Pinto JM. Olfactory dysfunction persists after smoking cessation and signals increased cardiovascular risk. Int Forum Allergy Rhinol 2019;9(9):977-85. doi: 10.1002/alr.22357.

Majchrzak D, Ezzo M-C, Kiumarsi M. The effect of tobacco- and electronic cigarettes use on the olfactory function in humans. Food Quality Preference 2020;86:103995. doi: 10.1016/j.foodqual.2020.103995.

Salturk Z, Çakır Ç, Sünnetçi G, Atar Y, Kumral TL, Yıldırım G, et al. Effects of Electronic Nicotine Delivery System on Larynx: Experimental Study. J Voice 2015;29(5):560-3. doi: 10.1016/j.jvoice.2014.10.013.

Ball M, Hossain M, Padalia D. Anatomy, Airway. In: StatPearls. Treasure Island (FL): StatPearls Publishing LLC; 2022.

Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, et al. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2021;57(2):104-32. doi: 10.1007/s11626--020-00517-7.

Ferro MP, Leclerc L, Sleiman M, Marchiori B, Pourchez J, Owens RM, et al. Effect of E Cigarette Emissions on Tracheal Cells Monitored at the Air-Liquid Interface Using an Organic Electrochemical Transistor. Adv Biosyst 2019;3(3):e1800249. doi: 10.1002/adbi.201800249.

Movia D, Bruni-Favier S, Prina-Mello A. In vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models – A Perspective. Front Bioeng Biotechnol 2020;8:549. doi: 10.3389/fbioe.2020.00549.

Neilson L, Mankus C, Thorne D, Jackson G, DeBay J, Meredith C. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicol In Vitro 2015;29(7):1952-62. doi: 10.1016/j.tiv.2015.05.018.

Noël A, Hossain E, Perveen Z, Zaman H, Penn AL. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir Res 2020;21(1):305. doi: 10.1186/s12931-020-01571-1.

Cancelada L, Tang X, Russell ML, Maddalena RL, Litter MI, Gundel LA, et al. Volatile aldehyde emissions from “sub-ohm” vaping devices. Environ Res 2021;197:111188. doi: 10.1016/j.envres.2021.111188.

Czekala L, Simms L, Stevenson M, Tschierske N, Maione AG, Walele T. Toxicological comparison of cigarette smoke and e-cigarette aerosol using a 3D in vitro human respiratory model. Regul Toxicol Pharmacol 2019;103:314-24. doi: 10.1016/j.yrtph.2019.01.036.

Czekala L, Wieczorek R, Simms L, Yu F, Budde J, Trelles Sticken E, et al. Multi-endpoint analysis of human 3D airway epithelium following repeated exposure to whole electronic vapor product aerosol or cigarette smoke. Curr Res Toxicol 2021;2:99-115. doi: 10.1016/j.crtox.2021.02.004.

Kreindler JL, Jackson AD, Kemp PA, Bridges RJ, Danahay H. Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract. Am J Physiol Lung Cell Mol Physiol 2005;288(5):L894-902. doi: 10.1152/ajplung.00376.2004.

Raju SV, Lin VY, Liu L, McNicholas CM, Karki S, Sloane PA, et al. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am J Respir Cell Mol Biol 2017;56(1):99-108. doi: 10.1165/rcmb.2016-0226OC.

Lin VY, Fain MD, Jackson PL, Berryhill TF, Wilson LS, Mazur M, et al. Vaporized E-Cigarette Liquids Induce Ion Transport Dysfunction in Airway Epithelia. Am J Respir Cell Mol Biol 2019;61(2):162-73. doi: 10.1165/rcmb.2017-0432OC.

Gaurav R. Vaping Away Epithelial Integrity. Am J Respir Cell Mol Biol 2019;61(2):127-9. doi: 10.1165/rcmb.2019-0016ED.

Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, et al. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am J Respir Crit Care Med 2019;200(9):1134-45. doi: 10.1164/rccm.201811-2087OC.

Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, et al. Gene Expression Alterations in the Bronchial Epithelium of e-Cigarette Users. Chest 2019;156(4):764-73. doi: 10.1016/j.chest.2019.05.022.

Ween MP, Hamon R, Macowan MG, Thredgold L, Reynolds PN, Hodge SJ. Effects of E-cigarette E-liquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology 2020;25(6):620-8. doi: 10.1111/resp.13696.

Ween MP, Moshensky A, Thredgold L, Bastian NA, Hamon R, Badiei A, et al. E-cigarettes and health risks: more to the flavor than just the name. Am J Physiol Lung Cell Mol Physiol 2021;320(4):L600-14. doi: 10.1152/ajplung.00370.2020.




DOI: https://doi.org/10.21164/pomjlifesci.1065

Copyright (c) 2024 Paweł Szumilas, Kamila Szumilas, Aleksandra Wilk, Alicja Zawiślak, Beata Karakiewicz

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/