WYSTĘPOWANIE NIENASYCONYCH KWASÓW TŁUSZCZOWYCH TYPU TRANS (ELAIDYNOWEGO I WAKCENOWEGO) W MLEKU KOBIECYM

Dominika Jamioł-Milc, Ewa Stachowska, Tomasz Janus, Anna Barcz, Dariusz Chlubek

Abstrakt


Wstęp: Nienasycone kwasy tłuszczowe typu trans (TFA) posiadają w swojej strukturze co najmniej jedno wiązanie podwójne o konfiguracji trans. Liczne badania dowiodły, że przyczyniają się do niekorzystnych zmian profilu lipidowego krwi, mogą inicjować lub przyspieszać przebieg wielu schorzeń o tle zapalnym, a także zmniejszać stopień wykorzystania kwasów tłuszczowych z rodziny n-6 i n-3. Obecność TFA w tkankach i płynach ustrojowych jest wynikiem przede wszystkim spożywania pokarmów posiadających w swoim składzie te kwasy tłuszczowe. Celem pracy było określenie tego, jak kształtują się stężenia kwasu elaidynowego i wakcenowego w dojrzałym mleku kobiecym oraz ustalenie, czy istnieją zależności pomiędzy stężeniami tych dwóch TFA a stężeniami kwasów tłuszczowych z rodziny omega-3 i omega-6.

Materiał i metody: Badaniami objęto 53 kobiety w wieku 18–39 lat, w okresie laktacji, w 5.–6. tyg. połogu. W mleku kobiecym oznaczono zawartość kwasu elaidynowego i wakcenowego. Estry metylowe kwasów tłuszczowych nastrzykiwano na kolumnę kapilarną chromatografu gazowego 6890M Agilent wyposażonego w autosampler. Izomery geometryczne i pozycyjne kwasów tłuszczowych były identyfikowane na podstawie porównania czasów retencji z wzorcami kwasów tłuszczowych firmy Sigma-Aldrich. Zawartość poszczególnych kwasów tłuszczowych odczytywano na podstawie krzywych wzorcowych i wyrażono w mg/mL.

Wyniki: Stężenie kwasu elaidynowego kształtowało się na poziomie 0,2572 ±0,1811 mg/mL, natomiast kwasu wakcenowego 0,2736 ±0,1852 mg/mL. W badanym mleku kobiecym nie zaobserwowano ujemnych korelacji pomiędzy stężeniami badanych TFA a stężeniami kwasów tłuszczowych z rodziny omega-3 i omega-6.

Wnioski: Średnie stężenia kwasu elaidynowego i wakcenowego kształtowały się na podobnym poziomie i nie miały negatywnego wpływu na stężenie kwasu arachidonowego oraz kwasu dokozaheksaenowego.


Słowa kluczowe


nienasycone kwasy tłuszczowe typu trans; kwas wakcenowy; kwas elaidynowy; mleko kobiece

Pełny tekst:

PDF

Bibliografia


Aro A., Amaral E., Kesteloot H., Rimestad A., Thamm van Poppel G.: Trans fatty acids in french fries, soups, and snacks from 14 European countries: The TRANSFAIR study. J Food Comp Anal. 1998, 11 (2), 170–177.

Aro A., Kardinaal A.F.M., Salminen I., Kark J.D., Riemersma R.A., Delgado-Rodriguez M. et al.: Adipose tissue isomeric trans fatty acids and risk of myocardial infarction in nine countries: the EURAMIC study. Lancet. 1995, 345, 273–278.

Hu F.B., Stampfer M.J., Manson J.E., Rimm E., Colditz G.A., Rosner B.A. et al.: Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med. 1997, 337 (21), 1491–1499.

Mensink R.P., Zock P.L., Kester A.D., Katan M.B.: Effects of dietary fatty acids and carbohydrates on the ratio of serum total HDL cholesterol and on serum lipids and apolipoproteins: a meta analysis of 60 controlled trials. Am J Clin Nutr. 2003, 77 (5), 1146–1155.

Roberts T.L., Wood D.A., Reimersma R.A., Gallagher P.J., Lampe F.C.: Trans isomers of oleic and linoleic acids in adipose tissue and sudden cardiac death. Lancet. 1995, 345 (8945), 278–282.

Judd J.T., Clevidence B.A., Muesing R.A., Wittes J., Sunkin M.E., Podczasy J.J.: Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr. 1994, 59 (4), 861–868.

Katan M.B., Zock P L., Mensink R.P.: Trans fatty acids and their effects on lipoproteins in humans. Annu Rev Nutr. 1995, 15, 473–493.

Kuhnt K., Wagner A., Kraft J., Basu S., Jahreis G.: Dietary supplementation with 11 trans and 12 trans 18:1 and oxidative stress in humans. Am J Clin Nutr. 2006, 84 (5), 981–988.

Troisi R., Willett W.C., Weiss S.T.: Trans fatty acid intake in relation to serum lipid concentrations in adult men. Am J Clin Nutr. 1992, 56 (6), 1019–1024.

Lopez-Garcia E., Schulze M.B., Meigs J.B., Manson J.E., Rifai N., Stampfer M.J. et al.: Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr. 2005, 135 (3), 562–566.

Mozaffarian D., PischonT., Hankinson S.E., Rifai N., Joshipura K., Willett W.C. et al.: Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr. 2004, 79 (4), 606–612.

Mozaffarian D., Rimm E.B., King I.B., Lawler R.L., McDonald G.B., Levy W.C.: Trans fatty acids and systemic inflammation in heart failure. Am J Clin Nutr. 2004, 80 (6), 1521–1525.

Ibrahim A., Natrajan S., Ghafoorunissa R.: Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism. 2005, 54 (2), 240–246.

Salmeron J., Hu F.B., Manson J.E., Stampfer M.J., Colditz G.A., Rimm E.B. et al.: Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001, 73 (6), 1019–1026.

King I.B., Kristal A.R., Schaffer S., Thornquist M., Goodman G.E.: Serum trans fatty acids are associated with risk of prostate cancer in beta-carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev. 2005, 14 (4), 988–992.

Kohlmeier L., Simonsen N., van’t Veer P., Strain J.J., Martin-Moreno J.M., Margolin B. et al.: Adipose tissue trans fatty acids and breast cancer in the European community. Multicenter study on antioxidants, myocardial infarction and breast cancer. Cancer Epidemiol Biomarkers Prev. 1997, 6 (9), 705–710.

Liu X., Schumacher F.R., Plummer S.J., Jorgenson E., Casey G., Witte J.S.: Trans fatty acid intake and increased risk of advanced prostate cancer: modification by RNASEL R462Q variant. Carcinogenesis. 2007, 28 (6), 1232–1236.

Rissanen H., Knekt P., Jarvinen R., Salminen I., Hakulinen T.: Serum fatty acids and breast cancer incidence. Nutr Cancer. 2003, 45 (2), 168–175.

Cook H.W., Emken E.A.: Geometric and positional fatty acid isomers interact differently with desaturation and elongation of linoleic and linolenic acids in cultured glioma cells. Biochem Cell Biol. 1990, 68 (3), 653–660.

De Schrijver R., Privett O.S.: Interrelationship between dietary trans fatty acids and the 6-and 9-desaturases in the rat. Lipids. 1982, 17 (1), 27–34.

Kurata N., Privett O.S.: Effects of dietary trans acids on the biosynthesis of arachidonic acid in rat liver microsomes. Lipids. 1980, 15 (12), 1029–1036.

Larque E., Garcia-Ruiz P.A., Perez-Llamas F., Zamora S., Gil A.: Dietary trans fatty acids alter the compositions of microsomes and mitochondria and the activities of microsome delta6-fatty acid desaturase and glucose-6-phosphatase in livers of pregnant rats. J Nutr. 2003, 133 (8), 2526–2531.

Larque E., Perez-Llamas F., Puerta V., Giron M.D., Suarez M.D., Zamora S. et al.: Dietary trans fatty acids affect docosahexaenoic acid concentrations in plasma and liver but not brain of pregnant and fetal rats. Pediatr Res. 2000, 47 (2), 278–283.

Rosenthal M.D., Doloresco M.A.: The effects of trans fatty acids on fatty acyl delta 5 desaturation by human skin fibroblasts. Lipids. 1984, 19 (11), 869–874.

Stachowska E., Dołęgowska B., Chlubek D., Wesołowska T., Ciechanowski K., Gutowski P. et al.: Dietary trans fatty acids composition of human atheromatous plaques. Eur J Nutr. 2004, 43 (5), 313–318.

Devillard E., McIntosh F.M., Duncan S.H., Wallace R.J.: Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol. 2007, 189 (6), 2566–2570.

Holman R.T., Pusch F., Svingen B., Dutton H.J.: Unusual isomeric polyunsaturated fatty acids in liver phospholipids of rats fed hydrogenated oil. Proc Natl Acad Sci USA. 1991, 88 (11), 4830–4834.

Hunter J.E.: Dietary trans fatty acids: review of recent human studies and food industry responses. Lipids. 2006, 41 (11), 967–992.

Martin C.A., Milinsk M.C., Visentainer J.V., Matsushita M., de-Souza N.E.: Trans fatty acid-forming processes in foods: a review. An Acad Bras Cienc. 2007, 79 (2), 343–350.

Mosley E.E., Powell G.L., Riley M.B., Jenkins T.C.: Microbial biohydrogenation of oleic acid to trans isomers in vitro. J Lipid Res. 2002, 43 (2), 290–296.

Botham K.M., Mayes P.A.: Lipidy o znaczeniu fizjologicznym. In: Biochemia Harpera. Eds. R.K. Murray. PZWL, Warszawa 2008, 149–161.

Innis S.M., Green T.J., Halsey T.K.: Variability in the trans fatty acid content of foods within a food category: implications for estimation of dietary trans fatty acid intakes. J Am Coll Nutr. 1999, 18 (3), 255–260.

Gebauer S.K., Psota T.L., Kris-Etherton P.M.: The diversity of health effects of individual trans fatty acids isomers. Lipids. 2007, 42 (9), 787–799.

Kraft J., Hanske L., Mockel P., Zimmermann S., Hartl A., Kramer J.K. et al.: The conversion efficiency of trans-11 and trans-12 18:1 by delta 9-desaturation differs in rats. J Nutr. 2006, 136 (5), 1209–1214.

Wolff R.L., Precht D.: Reassessment of the contribution of bovine milk fats to the trans-18:1 isomeric acid consumption by European populations. Additional data for rumenic (cis-9, trans-11 18:2) acid. Lipids. 2002, 37 (12), 1149–1150.

Koletzko B., Mrotzek M., Bremer H.J.: Fatty acids composition of mature human milk in Germany. Am J Clin Nutr. 1988, 47 (6), 954–959.

Del Prado M., Villalpando S., Elizondo A., Rodriguez M., Demmelmair H., Koletzko B.: Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr. 2001, 74 (2), 242–247.

Tinoco S.M., Sichieri R., Setta C.L., Moura A.S., do Carmo M.G.: Trans fatty acids from milk of Brazilian mothers of premature infants. J Paediatr Child Health. 2008, 44 (1–2), 50–56.

Daud A.Z., Mohd-Esa N., Azlan A., Mun Chan Y.: The trans fatty acid content in human milk and its association with maternal diet among lactating mothers in Malaysia. Asia Pac J Clin Nutr. 2013, 22 (3), 431–442.

Ratnayake W.M., Chen Z.Y.: Trans, n-3, and n-6 fatty acids in Canadian human milk. Lipids. 1996, 31 (Suppl.), S279–S282.

Silber G., Hachey D.L., Schanler R., Garza C.: Manipulation of the maternal diet to alter fatty acid composition of human milk intended for premature infants. Am J Clin Nutr. 1988, 47 (5), 810–814.

Neville M.C.: Regulation of milk fat synthesis. J Pediatr Gastroenterol Nutr. 1989, 8 (4), 426–429.

Hachey D.L., Thomas M.R., Emken E.A., Garza C., Brown-Booth L., Adlof R.O. et al.: Human lactation: maternal transfer of dietary triglycerides labeled with stable isotopes. J Lipid Res. 1987, 28 (10), 1185–1192.

Chappell J.E., Clandinin M.T., Kearney-Volpe C.: Trans fatty acids in human milk lipids: influence of maternal diet and weigh loss. Am J Clin Nutr. 1985, 42 (1), 49–56.

Neville M.C., Picciano M.F.: Regulation of milk lipid secretion and composition. Annu Rev Nutr. 1997, 17, 159–184.

Gaynor P.J., Waldo D.R., Capuco A.V., Erdman R.A., Douglass L.W., Teter B.B.: Milk fat depression, the glucogenic theory and trans C18:1 fatty acids. J Dairy Sci. 1995, 78 (9), 2008–2015.

Rudolph M.C., Neville M 47. .C., Anderson S.M.: Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Neoplasia. 2007, 12 (4), 269–281.

Turpeinen A.M., Mutanen M., Aro A., Salminen I., Basu S., Palmquist D.L. et al.: Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr. 2002, 76 (3), 504–510.

Niwińska B.: Endogenous synthesis of rumenic acid in humans and cattle. J Animal Feed Sci. 2010, 19, 171–182.

Szabo E., Boehm G., Beermann C., Weyermann M., Brenner H., Rothenbacher D. et al.: Trans octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study. Am J Clin Nutr. 2007, 85 (5), 1320–1326.

Kummerow F.A., Zhou Q., Mahfouz M.M., Smiricky M.R., Grieshop C.M., Schaeffer D.J.: Trans fatty acids in hydrogenated fat inhibited the synthesis of the polyunsaturated fatty acids in the phospholipid of arterial cells. Life Sci. 2004, 74 (22), 2707–2723.

Innis S.M., King D.J.: Trans fatty acids in human milk are inversely associated with concentrations of essential all cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3 fatty acids in plasma lipids of breast-fed infants. Am J Clin Nutr. 1999, 70 (3), 383–390.

Lawson L.D., Hill E.G., Holman R.T.: Suppression of arachidonic acid in lipids of rat tissues by dietary mixed isomeric cis and trans octadecenoates. J Nutr. 1983, 113 (9), 1827–1835.

Lippi G., Albiero A., Montagnana M., Salvagno G.L., Scevarolli S., Franchi M. et al.: Lipid and lipoprotein profile in physiological pregnancy. Clin Lab. 2007, 53 (3–4), 173–177.

Hill E.G., Johnson S.B., Lawson L.D., Mahfouz M.M., Holman R.T.: Perturbation of the metabolism of essential fatty acids by dietary partially hydrogenated vegetable oils. Proc Natl Acad Sci USA. 1982, 79 (4), 953–957.

Zevenbergen J.L., Houtsmuller U.M., Gottenbos J.J.: Linoleic acid requirement of rats fed trans fatty acids. Lipids. 1988, 23 (3), 178–186.

Mosley E.E., Wright A.L., McGuire M.K., McGuire M.A.: Trans fatty acids in milk produced by women in the United States. Am J Clin Nutr. 2005, 82 (6), 1292–1297.

van de Vijver L.P., Kardinaal A.F., Couet C., Aro A., Kafatos A., Steingrimsdottir L. et al.: Association between trans fatty acid intake and cardiovascular risk factors in Europe: the TRANSFAIR study. Eur J Clin Nutr. 2000, 54 (2), 126–135.

Glew R.H., Cole D.M., Mehla G.S., El-Nafaty A.U., Crossey M.J., Tzamaloukas A. et al.: Lysosomal enzymes in preeclamptic women in northern Nigeria. Clin Chim Acta. 2005, 353 (1–2), 95–101.

Larque E., Zamora S., Gil A.: Dietary trans fatty acids in early life: a review. Early Hum Dev. 2001, 65 (Suppl. 2), 31–41.

McCloy U., Ryan M.A., Pencharz P.B., Ross R.J., Cunnane S.C.: A comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women. J Lipid Res. 2004, 45 (3), 474–485.

Koletzko B.: Trans fatty acids may impair biosynthesis of long chain polyunsaturates and growth in man. Acta Paediatr. 1992, 81 (4), 302–306.

van Greevenbroek M.M., Robertus-Teunissen M.G., Erkelens D.W., de Bruin T.W.: Lipoprotein secretion by intestinal Caco-2 cells is affected differently by trans and cis unsaturated fatty acids: effect of carbon chain length and position of the double bond. Am J Clin Nutr. 1998, 68 (3), 561–567.

Dashti N., Feng Q., Franklin F.A.: Long-term effects of cis and trans monounsaturated (18:1) and saturated (16:0) fatty acids on the synthesis and secretion of apolipoprotein A-I-and apolipoprotein B-containing lipoproteins in HepG2 cells. J Lipid Res. 2000, 41 (12), 1980–1990.

Guzman M., Klein W., Gomez del Pulgar T., Geelen M.J.: Metabolism of trans fatty acids by hepatocytes. Lipids. 1999, 34 (4), 381–386.

Christiansen E., Schnider S., Palmvig B., Tauber-Lassen E., Pedersen O.: Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care. 1997, 20 (5), 881–887.

Lessa N.M., Nakajima V.M., Matta S.L., Peluzio M.C., Sabarense C.M., Costa N.M.: Deposition of trans fatty acid from industrial sources and its effect on different growth phases in rats. Ann Nutr Metab. 2010, 57 (1), 23–34.

Rice B.H., Kraft J., Destaillats F., Bauman D.E., Lock A.L.: Ruminant-produced trans-fatty acids raise plasma total and small HDL particle concentrations in male Hartley guinea pigs. J Nutr. 2010, 140 (12), 2173–2179.

Tholstrup T., Raff M., Basu S., Nonboe P., Sejrsen K., Straarup E.M.: Effects of butter high in ruminant trans and monounsaturated fatty acids on lipoproteins, incorporation of fatty acids into lipid classes, plasma C-reactive protein, oxidative stress, hemostatic variables, and insulin in healthy young men. Am J Clin Nutr. 2006, 83 (2), 237–243.

Motard-Belanger A., Charest A., Grenier G., Paquin P., Chouinard Y., Lemieux S. et al.: Study of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr. 2008, 87 (3), 593–599.

Tyburczy C., Major C., Lock A.L., Destaillats F., Lawrence P., Brenna J.T. et al.: Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in golden Syrian hamsters. J Nutr. 2009, 139 (2), 257–263.

Lock A.L., Horne C.A., Bauman D.E., Salter A.M.: Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J Nutr. 2005, 135 (8), 1934–1939.

Faulconnier Y., Roy A., Ferlay A., Chardigny J.M., Durand D., Lorenz S. et al.: Effect of dietary supply of butters rich either in trans-10-18:1 or in trans-11-18:1 plus cis-9, trans-11-18:2 on rabbit adipose tissue and liver lipogenic activities. Br J Nutr. 2006, 96 (3), 461–468.

Bauchart D., Roy A., Lorenz S., Chardigny J.M., Ferlay A., Gruffat D. et al.: Butters varying in trans 18:1 and cis-9, trans-11 conjugated linoleic acid modify plasma lipoproteins in the hypercholesterolemic rabbit. Lipids. 2007, 42 (2), 123–133.

Sun Q., Ma J., Campos H., Hankinson S.E., Hu F.B.: Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007, 86 (1), 74–81.




DOI: https://doi.org/10.21164/pomjlifesci.53

Copyright (c) 2016 Dominika Jamioł-Milc, Ewa Stachowska, Tomasz Janus, Anna Barcz, Dariusz Chlubek

URL licencji: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/