Osteogenic activity of lactoferrin and its application in contemporary dentistry

Grzegorz Trybek, Kamila Misiakiewicz-Has, Olga Preuss, Kamila Szumilas, Paweł Szumilas, Magda Aniko-Włodarczyk, Katarzyna Grocholewicz


Introduction: Lactoferrin (Lf) is a protein in the transferrin family with many biological functions. One novel activity of lactoferrin described recently is its regulatory function in bone morphogenesis. Lactoferrin has been shown to promote the growth, development, and differentiation of osteoblasts as well as to decrease osteoclast survival. Lactoferrin receptors (LfRs) mediate the multiple functions of lactoferrin. This review focuses on LfRs associated with bone and the intestines. The best known LfR is small intestine LfR (intelectin), which facilitates iron absorption and iron metabolism in humans. Many data from in vitro and in vivo studies have indicated that lactoferrin promotes bone formation by increasing the proliferation of osteoblasts and the ability of cells to synthesize and mineralize the bone matrix. Lactoferrin additionally inhibits osteoclastogenesis, reducing the number of osteoclasts and thus bone resorption. Lactoferrin, with its numerous antimicrobial, anti-inflammatory, and also osteogenic properties has found a number of applications in contemporary dentistry, especially in dental surgery, in periodontology, and in pedodontics.

Summary: This review presents in vivo and in vitro studies demonstrating the osteogenic and anti-inflammatory activity of Lf and its practical application in oral surgery and dentistry.


lactoferrin; bone; oral surgery; dentistry

Full Text:



Adlerova L, Bartoskova A, Faldyna M. Lactoferrin: a review. Vet Med Czech 2008;53:457-68.

Garcia-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta 2012;1820(3):226-36.

Kanwar JR, Roy K, Patel Y, Zhou SF, Singh MR, Singh D, et al. Multifunctional iron bound lactoferrin and na-nomedicinal approaches to enhance its bioactive functions. Molecules 2015;20:9703-31.

Trybek G, Metlerski M, Szumilas K, Aniko-Włodarczyk M, Preuss O, Grocholewicz K, et al. The biological properties of lactoferrin. Cent Eur J Sport Sci Med 2016;15(3):15-25.

Amini AA, Nair LS. Lactoferrin: a biologically active molecule for bone regeneration. Curr Med Chem 2011;18(8):1220-9.

Amini AA, Nair LS. Evaluation of the bioactivity of recombinant human lactoferrins toward murine osteob-last-like cells for bone tissue engineering. Tissue Eng Part A 2013;19(9-10):1047-55.

Ward PP, Paz E, Conneely OM. Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 2005;62(22):2540-8.

Cornish J, Callon KE, Naot D, Palmano KP, Banovic T, Bava U, et al. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 2004;145(9):4366-74.

Blais A, Malet A, Mikogami T, Martin-Rouas C, Tomé D. Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 2009;296(6):E1281-8.

Lorget F, Clough J, Oliveira M, Daury MC, Sabokbar A, Offord E. Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem Biophys Res Commun 2002;296(2):261-6.

Suzuki AY, Shin K, Lonnerdal B. Molecular cloning and functional expression of human intestinal lactofer-rin receptor. Biochemistry 2001;40(51):15771-9.

Lönnerdal B. Lactoferrin receptors in intestinal brush border membranes. Adv Exp Med Biol 1994;357:171-5.

Kuwata H, Yamauchi K, Teraguchi S, Ushida Y, Shimokawa Y, Toida T, et al. Functional fragments of inge-sted lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr 2001;131(8):2121-7.

Harada E, Itoh Y, Sitizyo K, Takeuchi T, Araki Y, Kitagawa H. Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets. Comp Biochem Physiol A Mol Integr Physiol 1999;124:321-7.

Ji ZS, Mahley RW. Lactoferrin binding to heparan sulfate proteoglycans and the LDL receptor related prote-in. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterio-scler Thromb 1994;14(12):2025-31.

Jenssen H, Andersen JH, Uhlin-Hansen L, Gutteberg TJ, Rekdal O. Anti-HSV activity of lactoferricin analogu-es is only partly related to their affinity for heparin sulfate. Antiviral Res 2004;61(12):101-9.

Legrand D, Vigie K, Said EA, Elass E, Masson M, Slomianny MC, et al. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur J Biochem 2004;271(2):303-17.

McAbee DD, Bennatt DJ, Ling YY. Identification and analysis of a CA(2+) –dependent Lf receptor in rat liver. Lf binds to the asialoglycoprotein receptor in a galactose-independent manner. Adv Exp Med Biol 1998;443:113-21.

Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low-density lipoprotein receptor-related protein and gp30 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, and inhibi-tor of chylomicron remnant clearance. J Biol Chem 1992;267:26172-80.

Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol 2014;337(10):581-95. doi: 10.1016/j.crvi.2014.08.003.

Frontera LS, Moyano S, Quassollo G, Lanfredi-Rangel A, Rópolo AS, Touz MC. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep. 2018 Dec 21;8(1):18020. doi: 10.1038/s41598-018-36563-1.

Grey A, Banovic T, Zhu Q, Watson M, Callon K, Palmano K, et al. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 2004;18(9):2268-78.

Grey A, Zhu Q, Watson M, Callon K, Cornish J. Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol 2006;251(1-2):96-102.

Hou JM, Chen EY, Lin F, Lin QM, Xue Y, Lan XH, et al. Lactoferrin Induces Osteoblast Growth through IGF-1R. Int J Endocrinol 2015;2015:282806.

Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 1999;106(1):167-70.

Gay CV, Weber JA. Regulation of differentiated osteoclasts. Rev Eukaryot Gene Expr 2000;10:213-30.

Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 2013;92(10):860-7.

Cornish J, Naot D. Lactoferrin as an effector molecule in the skeleton. Biometals 2010;23(4):425-30.

Legrand D, Elass E, Carpentier M, Mazurier J. Interaction of lactoferrin with cells involved in immune func-tion. Biochem Cell Biol 2006;84(3):282-90.

Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2(4):389-406.

Yamaguchi A. Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by trans-forming growth factor-beta superfamily. Semin Cell Biol 1995;6(3):165-73.

Yagi M, Suzuki N, Takayama T, Arisue M, Kodama T, Yoda Y, et al. Effects of lactoferrin on the differentia-tion of pluripotent mesenchymal cells. Cell Biol Int 2009;33:283-9.

Zhang JL, Han X, Shan YJ, Zhang LW, Du M, Liu M, et al. Effect of bovine lactoferrin and human lactoferrin on the proliferative activity of the osteoblast cell line MC3T3-E1 in vitro. J Dairy Sci 2018;101(3):1827-33. doi: 10.3168/jds.2017-13161.

Liu M, Fan F, Shi P, Tu M, Yu C, Yu C, et al. Lactoferrin promotes MC3T3-E1 osteoblast cells proliferation via MAPK signaling pathways. Int J Biol Macromol 2018;107(Pt A):137-43. doi: 10.1016/j.ijbiomac.2017.08.151.

Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. Effect of hydroxyapatite nanocrystals functiona-lized with lactoferrin in osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2015;103(1):224-34.

Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. Coupling Hydroxyapatite Nanocrystals with Lac-toferrin as a Promising Strategy to Fine Regulate Bone Homeostasis. PLoS One 2015;10(7):e0132633.

Vandrovcova M, Douglas TE, Heinemann S, Scharnweber D, Dubruel P, Bacakova L. Collagen-lactoferrin fi-brillar coatings enhance osteoblast proliferation and differentiation. J Biomed Mater Res A 2015;103(2):525-33.

Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, et al. Collagen type I hydrogel allows migra-tion, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 2010;94(2):442-9.

Masi L, Franchi A, Santucci M, Danielli D, Arganini L, Giannone V, et al. Adhesion, growth, and matrix pro-duction by osteoblasts on collagen substrata. Calcif Tissue Int 1992;51(3):202-12.

Matthews BG, Naot D, Callon KE, Musson DS, Locklin R, Hulley PA, et al. Enhanced osteoblastogenesis in three-dimensional collagen gels. Bonekey Rep 2014;3:560.

Takayama Y, Mizumachi K. Effect of bovine lactoferrin on extracellular matrix calcification by human oste-oblast-like cells. Biosci Biotechnol Biochem 2008;72(1):226-30.

Takayama Y, Mizumachi K. Effect of lactoferrin-embedded collagen membrane on osteogenic differentia-tion of human osteoblast-like cells. J Biosci Bioeng 2009;107(2):191-5.

Huang N, Bethell D, Card C, Cornish J, Marchbank T, Wyatt D, et al. Bioactive recombinant human lactofer-rin, derived from rice, stimulates mammalian cell growth. In Vitro Cell Dev Biol Anim 2008;44(10):464-71.

Nandi S, Yalda D, Lu S, Nikolov Z, Misaki R, Fujiyama K, et al. Process development and economic evalua-tion of recombinant human lactoferrin expressed in rice grain. Transgenic Res 2005;14:237-49.

Ward PP, Uribe-Luna S, Conneely OM. Lactoferrin and host defense. Biochem Cell Biol 2002;80(1):95-102.

Häkkinen L, Uitto VJ, Larjava H. Cell biology of gingival wound healing. Periodontol 2000 2000;24:127-52.

Proksch S, Steinberg T, Keller C, Wolkewitz M, Wiedmann-Al-Ahmad M, Finkenzeller G, et al. Human saliva exposure modulates bone cell performance in vitro. Clin Oral Invest 2012;16:69-77.

Paknejad M, Rokn A, Sabur A, Elhami F. Histologic and histomorphometric study on the effects of lactofer-rin and porous bovine bone mineral (Bio-Oss) on the regeneration of bone defects made on rabbit calva-rium. J Dent Med 2010;23:167-74.

Paknejad M, Rokn AR, Yaraghi AA, Elhami F, Kharazifard MJ, Moslemi N. Histologic and histomorphome-tric evaluation of the effect of lactoferrin combined with anorganic bovine bone on healing of experimental-ly induced bony defects on rabbit calvaria. Dent Res J (Isfahan) 2012;9(1):75-80.

Yoshimaki T, Sato S, Tsunori K, Shino H, Iguchi S, Arai Y, et al. Bone regeneration with systemic administra-tion of lactoferrin in non-critical-sized rat calvarial bone defects. J Oral Sci 2013;55(4):343-8.

Li W, Zhu S, Hu J. Bone Regeneration Is Promoted by Orally Administered Bovine lactoferrin in a Rabbit Ti-bial Distraction Osteogenesis Model. Clin Orthop Relat Res 2015;473(7):2383-93.

Hou JM, Xue Y, Lin QM. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol Sin 2012;33(10):1277-84.

Guo HY, Jiang L, Ibrahim SA, Zhang L, Zhang H, Zhang M, et al. Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J Nutr 2009;139(5):958-64.

Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A. Bovine lactoferrin improves bone status of ova-riectomized mice via immune function modulation. Bone 2011;48(5):1028-35.

Bharadway S, Naidu AGT, Betageri GV, Prasadarao NV, Naidu AS. Milk ribonuclease-enriched lactoferrin in-duces positive effects on bone turnover markers in postmenopausal women. Osteoporos Int 2009;20(9):1603-11.

Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent 1993;2(3):158-67.

Stern A, Barzani G. Autogenous bone harvest for implant reconstruction. Dent Clin North Am 2015;59(2):409-20.

Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. An experimental study in the dog. Clin Oral Implants Res 2004;15(3):285-92.

Jung RE, Glauser R, Schärer P, Hämmerle CHF, Sailer HF, Weber FE. Effect of rhBMP-2 on guided bone rege-neration in humans. A randomized, controlled clinical and histomorphometric study. Clin Oral Implants Res 2003;14(5):556-68.

Takaoka R, Hikasa Y, Hayashi K, Tabata Y. Bone regeneration by lactoferrin released from a gelatin hydro-gel. J Biomater Sci Polym Ed 2011;22(12):1581-9.

Cheng Y, Sun J, Zhou Z, Pan J, Zou S, Chen J. Effects of lactoferrin on bone resorption of midpalatal suture during rapid expansion in rats. Am J Orthod Dentofacial Orthop 2018;154(1):115-127.

Görmez U, Kürkcü M, E Benlidayi M, Ulubayram K, Sertdemir Y, Dağlioğlu K. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants. J Oral Sci 2015;57(1):7-15.

Yoshida E, Hayakawa T. Adsorption Analysis of Lactoferrin to Titanium, Stainless Steel, Zirconia, and Polymethyl Methacrylate Using the Quartz Crystal Microbalance Method. Biomed Res Int 2016;2016:3961286.

Nagano-Takebe F, Miyakawa H, Nakazawa F, Endo K. Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating. Biointerphases 2014;9(2):029006.

Ishikado A, Uesaki S, Suido H, Nomura Y, Sumikawa K, Maeda M, et al. Human trial of liposomal lactoferrin supplementation for periodontal disease. Biol Pharm Bull 2010;33:1758-62.

Koshi R, Kotani K, Ohtsu M, Yoshinuma N, Sugano N. Application of Lactoferrin and α1-antitrypsin gingiva; retention fluid to diagnosis of periodontal disease. Dis Markers 2018:2018:4308291.

Oho T, Mitoma M, Koga T. Functional domain bovine milk lactoferrin which inhibits the adherence of Streptococcus mutans cells to a salivary film. Infect Immun 2002;70(90):5279-82.

Gudipaneni RK, Kumar RV, GJ, Peddengatagari S, Duddu Y. Short term comparative evaluation of antimicro-bial efficacy of tooth paste containing lactoferrin, lysozyme, lactoperoxidase in children with severe early childhood caries: a clinical study. J Clin Diagn Res 2014;8(4):ZC18-20.

DOI: https://doi.org/10.21164/pomjlifesci.521

Copyright (c) 2020 Grzegorz Trybek, Kamila Misiakiewicz-Has, Olga Preuss, Kamila Szumilas, Paweł Szumilas, Magda Aniko-Włodarczyk, Katarzyna Grocholewicz

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/