Czy można bezpośrednio po związaniu materiału Biodentine przystąpić do odtworzenia tkanek zęba z zastosowaniem systemu samotrawiącego?

Katarzyna Kot, Alicja Nowicka, Mariusz Lipski

Abstrakt


Wstęp: Materiał Biodentine nazywany jest bioaktywnym substytutem zębiny i może być stosowany do przykrycia odsłoniętej miazgi i jednoczesnej odbudowy zębiny w tzw. metodzie jednoseansowej.

Celem pracy była ocena w elektronowym mikroskopie skaningowym ścian ubytku, na które zastosowano system wiążący bezpośrednio po związaniu materiału Biodentine (po 15 min od jego przygotowania) oraz po 24 godz. od jego związania.

Materiały i metody: Do badania posłużyło 6 ludzkich zębów przedtrzonowych, w których na powierzchni żującej wypreparowano ubytki kl. I Blacka. Dno ubytków przykryto materiałem Biodentine. Następnie zęby podzielono na 2 grupy po 3 zęby w każdej. W grupie I, po upływie 15 min od momentu przygotowania materiału Biodentine, zastosowano system wiążący Prelude (Danville, USA). W grupie II zastosowano identyczną procedurę po 24 godz.

Wyniki: Obserwacje ścian ubytku wykonane w skaningowym mikroskopie elektronowym (SEM) wykazały w grupie I obecność licznych drobin pokrywających powierzchnię zębiny i szkliwa. Mikroanaliza spektroskopii dyspersji energii (energy dispersive spectromerty – EDS) potwierdziła m.in. obecność krzemu i glinu występujących w materiale Biodentine. W grupie II ściany ubytku były wolne od zanieczyszczeń. Analiza EDS wykazała obecność pierwiastków typowych dla tkanek zęba.

Wnioski: Materiał Biodentine po 15 min od przygotowania nie ulega związaniu w takim stopniu, by można było bezpiecznie stosować system wiążący w przypadku użycia Biodentine jako podkładu.


Słowa kluczowe


Biodentine; systemy wiążące; SEM; mikroanaliza EDS

Pełny tekst:

PDF

Bibliografia


Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 2003;28:215-35.

Perdigão J. Dentin bonding as function of dentin structure. Dent Clin North Am 2002;46:1-25.

Swift EJ Jr. Dentin/enamel adhesives: review of literature. Pediatr Dent 2002;24:456-61.

Armstrong SR, Vargas MA, Fang Q, Laffoon JE. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent 2003;5:47-56.

Perdigão J, Geraldeli S. Bonding characteristics of self-etching adhesives to intact vs. prepared enamel. J Esthet Restor Dent 2003;15:32-42.

Sensi LG, Lopes GC, Monteiro S Jr, Banatieri LN, Vieira LC. Dentin bond strength of self-etching primers/adhesives. Oper Dent 2005;30:63-8.

Mazurek K. Adhezyjne cementowanie uzupełnień ceramicznych – kondycjonowanie powierzchni biorących udział w łączeniu. Protet Stomatol 2014;64:216-22.

Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-4.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part I: Chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.

Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review. Part II: Leakage and biocompatibility investigations. J Endod 2010;36:190-202.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-13.

Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent 2013;41:600-10.

Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent 2014;15:147-58.

Bortoluzi EA, Broon NJ, Bramante CM, Felippe WT, Tanomaru Filho M, Esberard RM. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod 2009;35:550-4.

Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on Biodentine, a contemporary dentine replacement and repair material. BioMed Res Int 2014;2014:160951. doi: 10.1155/2014/160951.

Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:20-8.

Nowicka A, Lipski M, Postek-Stefańska L, Wysoczyńska-Jankowicz I, Lichota D, Sporniak-Tutak K, et al. Pokrycie bezpośrednie miazgi zębów stałych z użyciem preparatu Biodentine – doniesienie wstępne. Mag Stomatol 2012;22:30-7.

Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth – a prospective study. Clin Oral Investig 2013;17:243-9.

Krawczyk-Stuss M, Ostrowska A, Łapińska B, Nowak J, Bołtacz-Rzepkowska E. Wytrzymałość połączenia Biodentine ze światłoutwardzalnym materiałem kompozytowym w zależności od czasu aplikacji i rodzaju systemu adhezyjnego. Dent Med Probl 2015;52:434-9.

Cantekin K, Avci S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine). J Appl Oral Sci 2014;22(4):302-6.

Olek A, Cynkier J. Metody oceny połączenia materiałów złożonych z tkankami zęba – przegląd piśmiennictwa. Dent Med Probl 2011;48:86-96.

Perdigão J. New developments in dental adhesion. Dent Clin North Am 2007;51:333-57.

D’Arcangelo C, Vanini L, Prosperi GD, Di Bussolo G, De Angelis F, D’Amario M. The influence of adhesive thickness on the microtensile bond strength of the three adhesive systems. J Adhes Dent 2009;11:109-15.

Giuliani V, Nieri M, Pace R, Pagavino G. Effects of pH on surface hardness and microstructure of mineral trioxide aggregate and Aureoseal: an in vitro study. J Endod 2010;36:1883-6.

Kayahan M, Nekoofar M, Kazandağ M, Canpolat C, Malkondu O, Kaptan F, et al. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J 2009;42:1004-14.

Elnaghy AM. Influence of acidic environment on properties of Biodentine and White Mineral Trioxide Aggregate: a comparative study. J Endod 2014;40:953-7.

Al-Sarheed MA. Evaluation of shear bond strength and SEM observation of all-in-one self-etching primer used for bonding of fissure sealants. J Contemp Dent Pract 2006;7:9-16.

Bayrak S, Tunҫ ES, Saroğlu I, Eğilmez T. Shear bond strengths of different adhesive systems to white mineral trioxide aggregate. Dent Mater J 2009;28:62-7.

Odabaș ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to Biodentine. Sci World J 2013;2013:626103. doi: 10.1155/2013/626103.

Altunsoy M, Tanriver M, Ok E, Kucukyilmaz E. Shear bond strength of a self-adhering flowable composite and flowable base composite to mineral trioxide aggregate, calcium-enriched mixture cement, and Biodentine. J Endod 2015;41:1691-5.

Neelakantan P, Grotra D, Subbarao CV, Garcia-Godoy F. The shear bond strength of resin-based composite to white mineral trioxide aggregate. J Am Dent Assoc 2012;143:40-5.




DOI: http://dx.doi.org/10.21164/pomjlifesci.324

Copyright (c) 2017 Katarzyna Kot, Alicja Nowicka, Mariusz Lipski

URL licencji: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/