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ABSTRACT
Mammals have 2 primary types of adipose tissue: brown adipose 
tissue (BAT) and white adipose tissue (WAT). White adipose tis-
sue, one of the largest organs, spans the entire body and persists 
throughout an individual’s life, with the highest concentrations 
found in the abdominal cavity or subcutaneously. In obese indi-
viduals, the amount of WAT can reach up to 70% of total body 
weight. Today, glucagon-like peptide-1 (GLP-1) analogs have gained 
popularity in the treatment of obesity, insulin resistance, and 
related metabolic disorders. Patients using glucagon-like pep-
tide-1 receptor agonists (GLP-1RAs) have improved lipid profiles, 
reduced visceral fat accumulation, and improved glucose tolerance.  

 
Polycystic ovarian syndrome (PCOS) is a disorder strongly asso-
ciated with insulin resistance and obesity. It is the most common 
heterogeneous endocrine disorder, affecting an estimated 1 in 
5 women of reproductive age. The introduction of GLP-1 analog 
treatment in women with PCOS could help to manage the dis-
ease, improve the quality of life of PCOS patients, increase their 
chances of conception, and maintain pregnancy until delivery. 
This review presents the latest reports on the use of GLP-1RAs 
and the treatment of PCOS. 
Keywords: glucagon-like peptide-1 agonists; adipose tissue; 
obesity; polycystic ovary syndrome. 

INTRODUCTION 

Adipose tissue characterization 
Mammals have 2 primary types of adipose tissue: brown adi-
pose tissue (BAT) and white adipose tissue (WAT), which can 
be distinguished by their macroscopic characteristics. White 
adipocytes are generally larger than brown adipocytes and 
contain a single substantial lipid droplet within the cytoplasm. 
In contrast, brown adipocytes contain numerous smaller lipid 
droplets. In addition, BAT cells contain an increased num-
ber of mitochondria, a feature consistent with their primary 
role in thermogenesis [1]. Brown adipose tissue positively 
influences lipid and carbohydrate metabolism by removing 
glucose and lipids from the bloodstream, thereby reducing 
the need for insulin secretion from pancreatic beta cells [2].

In contrast to BAT, the primary function of WAT is to store 
energy in the form of triglycerides (TAG). Therefore, WAT is 
able to store energy as TAG and release it during periods of 
increased energy demand by breaking down TAG into fatty 
acids. In addition, WAT assumes an endocrine role by secret-
ing adiponectins such as adiponectin or leptin [3, 4, 5]. 

There are also differences in the location and lifespan of 
WAT and BAT. White adipose tissue is found throughout the 
body and persists throughout the lifespan, with the highest 
concentrations found in the abdominal cavity or subcutane-
ously [6]. Brown adipose tissue, on the other hand, occurs 
primarily in infants and is localized primarily in the inter-
lobular space and surrounding muscles and blood vessels 

until the first decade of life. In adulthood, BAT nearly disap-
pears within 6 decades. It remains present in limited areas: 
around the kidneys, adrenal glands, aorta, neck, and medi-
astinum [7, 8]. 

In addition, a third type of adipose tissue has been identi-
fied: beige adipose tissue, an intermediate between BAT and 
WAT. This tissue is not confined to distinct deposits like BAT 
but is intermingled with WAT [2, 9]. 

Excessive growth of adipose tissue leads not only to the 
formation of subcutaneous fat deposits but also to visceral fat 
depots and fat accumulation in ectopic tissues, resulting in life-
threatening obesity [10]. This impairs the endocrine function 
of adipose tissue and triggers chronic inflammation (mainly 
mediated by WAT), which initiates a series of pro- and anti-
inflammatory pathways leading to adipocyte dysfunction. This 
dysfunction can subsequently lead to insulin resistance [11, 12]. 
Obesity-related insulin resistance is associated with a wide 
range of disorders, including dyslipidemia, non-alcoholic 
fatty liver disease (NAFLD), hypertension [13], cardiovascu-
lar disease, and stroke [14]. Treatment of obesity is essential 
to maintain health and minimize the consequences of obesity-
related diseases. Patient awareness is critical in this process. 
Depending on the severity of obesity, treatment includes life-
style changes (dietary modification, nutritional therapy, physi-
cal activity), pharmacotherapy (orlistat, a gastrointestinal 
lipase inhibitor that blocks the absorption of dietary fat [15]; 
sibutramine, a monoamine reuptake inhibitor [16]; phenter-
mine/topiramate, an appetite suppressant (pharmacologically 
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related to amphetamine) [17]; naltrexone-bupropion, which 
interferes with the reward pathway resulting in reduced food 
craving [18]), and even bariatric surgery [19, 20]. Treatment 
of insulin resistance very often starts with weight loss but 
additional medications (such as metformin, a biguanide with 
glucose-lowering effects [21]; sodium-glucose cotransporter 
2 (SGLT2) inhibitors, which block glucose at SGLT2 receptors 
in the proximal tubules of the kidney and inhibit urinary glu-
cose reabsorption [22]) are needed; thiazolidinediones, insulin 
sensitizers [23], and dipeptidyl peptidase-4 – DPP-4 inhibi-
tors, which inhibit the breakdown of incretins [24]), depending 
on the severity of the disease [20]. Nowadays, glucagon-like 
peptide-1 (GLP-1) analogs are used in the treatment of obesity 
and insulin resistance due to the presence of GLP-1 receptors 
in mature adipocytes and stromal-vascular cells, with a nota-
ble dominance in the latter [25]. The efficacy of GLP-1 in these 
roles is attributed to its ability to modulate the expression 
of glucose transporters 1 and 4 in adipocytes [26], together 
with its dose-dependent lipolytic effects mediated by adenylyl 
cyclase activity [15, 17]. The efficacy and presumed safety of 
the use of glucagon-like peptide-1 receptor agonists (GLP-1RAs), 
 together with their tolerability, have made them highly pre-
scribed drugs, not only for the treatment of life-threatening 
diseases but also as slimming agents in healthy individuals [27, 
28]. However, it should be noted that the long-term side effects 
of the use of GLP-1 analogs are still not determined and recent 
studies suggest their involvement in the pathophysiology of 
pancreatitis, increased risk of medullary thyroid cancer, and 
progression of diabetic retinopathy [29, 30, 31].

The action of glucagon-like peptide-1 
Glucagon-like peptide-1 is a peptide hormone of the incretin 
family consisting of 30–31 amino acids. The discovery of GLP-1 
and its properties redirected the treatment of diabetes [32]. 
Endogenous GLP-1 actions include increasing postprandial 
insulin secretion, controlling gastric motility [33], and decreas-
ing postprandial glucagon release [34, 35, 36, 37]. The peptide 
increases muscle insulin sensitivity, promotes lipolysis, and 
decreases lipogenesis. The same effects are obtained when 
GLP-1 analogs are administered. Thus, GLP-1 analogs are not 
only used in the treatment of diabetes but are gaining popular-
ity in the treatment of obesity, insulin resistance, and related 
metabolic disorders, as well as in the prevention of cardiovas-
cular disease. Receptors for GLP-1 are found in various tissues 
of the human body (including the pancreas, gastrointestinal 
tract, heart, lung, kidney, adipose tissue, and brain) [15, 21, 22, 
23]. Looking at adipose tissue, GLP-1 receptor expression is most 
pronounced in WAT of morbidly obese patients with insulin 
resistance and shows a positive correlation with the homeo-
stasis model assessment of insulin resistance (HOMA-IR) [25]. 
Given that individuals with insulin resistance and diabetes may 
have reduced circulating GLP-1 levels [38, 39, 40]. This correla-
tion may suggest a compensatory mechanism to enhance the 
interaction of GLP-1 with adipose tissue. This mechanism may 
explain the increased efficacy of GLP-1 analogs in the treat-
ment of obesity [25]. 

GLUCAGON-LIKE PEPTIDE-1 RECEPTOR 
AGONISTS ACTION ON ADIPOSE TISSUE 

Glucagon-like peptide-1 analogs are a relatively new group of 
drugs, synthetic counterparts of human GLP-1, typically admin-
istered by subcutaneous injection [25, 26]. Based on their dura-
tion of action, they can be classified into short-acting, includ-
ing exenatide and lixisenatide, and long-acting: liraglutide, 
dulaglutide, albiglutide, and semaglutide [41] – Table 1. Gluca-
gon-like peptide-1 receptor analogs, such as liraglutide and 
semaglutide, have emerged as breakthrough therapies, not 
only in reducing blood glucose levels in patients with diabe-
tes but also in treating obesity [42]. Liraglutide, administered 
subcutaneously at a dose of 3 mg, has been shown to reduce 
appetite, alter taste preferences, and decrease body fat stores, 
including total body fat, trunk fat, upper body fat, and lower 
body fat [43]. A meta-analysis conducted by Berg et al. also 
demonstrated reduced low-density lipoprotein (LDL) and TAG 
levels after GLP-1 analog use in diabetic patients [44]. In rats, 
liraglutide increases levels of glyoxalase 1 (GLO-1), an enzyme 
associated with impaired capillarity and insulin resistance in 
obese individuals, by decreasing its activity in adipose tissue. 
Liraglutide also contributes to increased angiogenic compounds 
and improved insulin sensitivity [45]. 

Tirzepatide, a GLP-1 and glucose-dependent insulinotropic 
peptide (GIP) receptor agonist, appears to be a revolution-
ary drug for the treatment of obesity in diabetic patients. The 
drug produces substantial and sustained reductions in body 
weight [46], shows superior and clinically significant reductions 
in hemoglobin A1c (HbA1c) compared to glargine (an extended-

-release human insulin analog) [31], improves pancreatic beta 
cell function [47], and demonstrates safety by not posing a risk 
of hypoglycemia during use [48, 49, 50]. Samms et al. also note 
that the drug reduces systemic levels of branched-chain amino 
acids and ketoacids by increasing their catabolism in mouse 
BAT [51]. These amino acids are associated with insulin resist-
ance, and reducing their levels results in improved glycemic 
control and decreased body weight [36, 37, 38].

In addition to inducing fat reduction, semaglutide reduces 
the expression of endoplasmic reticulum stress genes and sub-
sequently reduces inflammation by reducing the expression 
of pro-inflammatory genes such as activating transcription 
factor-4 (ATF4) and cytosine-cytosine-adenosine-thymidine 
(CCAAT) enhancer-binding protein (C/EBP) homologous protein 
(CHOP). In epididymal white adipose tissue (eWAT), semaglu-
tide treatment reduces growth arrest and deoxyribonucleic 
acid (DNA)-damage inducible gene 45, interleukin 6 (IL-6), 
interleukin 1 beta (IL-1β), monocyte chemoattractant protein 
1 (MCP 1), and tumor necrosis factor alpha (TNF-α), particularly 
in subjects on a high-fat diet [52]. Notably, histological images 
of adipocytes after semaglutide treatment show decreased 
macrophage infiltration and hypotrophy of adipocytes. 

A recent study by Zhu and Chen examined the proteomics of 
eWAT in obese mice and suggested that semaglutide treatment 
may positively affect adipose tissue by regulating lipid uptake, 
storage, and lipolysis in WAT [53]. Semaglutide-treated mice 
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showed decreased expression of proteins associated with lipid 
metabolism, such as lipoprotein lipase (LPL), monoacylglycerol 
lipase (MGLL), aquaporin-7 (AQP-7), pyruvate dehydrogenase 
(acetyl-transferring) kinase isozyme 4 (PDK4), angiopoietin-
related protein 4 (ANGPTL4), platelet glycoprotein 4 (CD36), 
fatty acid-binding protein 5 (FABP5), long-chain fatty acid CoA 
ligase 1 (ACSL), perilipin-2 (PLIN2), and peroxisomal acyl coen-
zyme A oxidase 3 (ACOX3). This reduction was associated with 
reduced visceral fat accumulation, improved blood lipid levels, 
and improved glucose tolerance. These findings suggest that 
semaglutide treatment may favorably affect adipose tissue by 
regulating lipid-related processes (Fig. 1).

FIGURE   1. The action of glucagon-like peptide-1 (GLP-1) and glucagon-like 
peptide-1 receptor agonists (GLP-1RAs) on adipose tissue

Endogenous GLP-1 affects BAT metabolism by regulating 
thermogenesis [54, 55, 56]. Comparable effects may be achieved 

by administration of GLP-1 analogs. In particular, semaglutide 
shows beneficial effects on adipocyte browning as reflected 
by increased expression of peroxisome proliferator-activated 
receptor (PPAR) alpha, PPAR gamma, and fibronectin type III 
domain-containing protein 5 (FNDC5), especially in the high-fat 
 diet group. In addition, semaglutide increases mitochondrial 
biogenesis through increased messenger ribonucleic acid 
(mRNA) expression of peroxisome proliferator-activated 
receptor-gamma coactivator 1 alpha (PGC-1α), nuclear respira-
tory factor 1 (NRF-1), and mitochondrial transcription factor 
A (TFAM). This leads to improved thermogenesis as indicated 
by upregulation of β3-adrenergic receptor (β3-AR), positive 
regulatory domain containing 16 (PRDM16), and uncoupling 
protein-1 (UCP1). 

The glucagon-like peptide-1 receptor agonist exenatide 
also activates sirtuin 1 (SIRT1), leading to the deacetylation 
of forkhead box O1 (FOXO1), which in turn activates adipose 
triglyceride lipase (ATGL). This cascade causes changes in WAT, 
accelerating its metabolism and promoting weight loss [42, 43]. 

GLUCAGON-LIKE PEPTIDE-1 ANALOGS AND 
POLYCYSTIC OVARY SYNDROME 

The ovaries, which play a key role in fertility, are composed of 
3 parts: the hilum, cortex, and medulla [57]. The cortex consists 
of the outer and inner zones in which the ovarian follicles are 
embedded [58]. As the primary functional units of the ovaries, 
the main purpose of the follicles is ovulation, a process regu-
lated by the hormones: follicular stimulating hormone (FSH) 
and luteinizing hormone (LH) [59, 60, 61, 62, 63]. 

Polycystic ovary syndrome (PCOS) is the most common 
heterogeneous endocrine disorder, affecting an estimated 1 in 
5 women of reproductive age [47, 48]. It is primarily associated 

TABLE   1. Glucagon-like peptide-1 analogs list with properties and the indication to use 

Name Half-life Dosage Approved date Approved indication

Exenatide 2.4 h or extended-
release, peak at 840 h

twice-daily injection or 
once-weekly injection

Apr, 2005 (FDA)/ Jan, 
2012 (FDA) type 2 diabetes mellitus treatment 

Liraglutide 13 h once-daily injection Jan, 2010 (FDA)
type 2 diabetes mellitus treatment and 

chronic weight management to reduce the risk 
of major adverse cardiovascular events 

Albiglutide 120 h once-weekly injection Apr, 2014 (FDA) type 2 diabetes mellitus treatment 

Dulaglutide 90 h once-weekly injection Sep, 2014 (FDA) type 2 diabetes mellitus treatment 

Lixisenatide 3–4 h once-daily injection Jul, 2016 (FDA) type 2 diabetes mellitus treatment 

Beinaglutide 1–2 min 3 times – daily injection Dec, 2016 (CFDA) type 2 diabetes mellitus treatment 

Semaglutide 160 h/7 days once-weekly injection/ 
once-daily oral 

Dec, 2017 (FDA)/ Sep, 
2019

type 2 diabetes mellitus treatment, chronic 
weight management,

to reduce the risk of major adverse 
cardiovascular events 

Polyethylene 
glycol loxenatide 80 h once-weekly injection May, 2019 (CFDA) type 2 diabetes mellitus treatment 

Tirzepatide 5 days once-weekly injection May, 2022 (CFDA) type 2 diabetes mellitus treatment (used off-
label for obesity treatment) 



Pomeranian J Life Sci 2023;69(4) 35

Benefits of administering GLP-1 analogs to patients with polycystic ovary syndrome, considering their effect on adipose tissue metabolism 

with endocrine disruption and excess androgens, resulting 
in the appearance of multiple cysts in the ovarian structure, 
abnormal menstrual cycles, and lack of ovulation [49, 50]. Stud-
ies also suggest a strong association between the development 
and severity of PCOS with environmental and epigenetic fac-
tors [64, 65, 66]. Polycystic ovary syndrome is strongly associ-
ated with insulin resistance (in both obese and lean individuals) 
and obesity (80% of patients) [48, 52, 53]. The increasing amount 
of insulin secreted stimulates androgen production in the ova-
ries, exacerbating hyperandrogenism [67, 68]. Polycystic ovary 
syndrome adversely affects quality of life through deterioration 
of mental status and mood, and increased risk of cardiovascu-
lar events. It may even lead to the development of ovarian neo-
plasms over time [51, 55]. 

The increased insulin sensitivity and weight loss associated 
with the use of GLP-1 analogs and the widespread expression of 
GLP-1 receptors (including the hypothalamic-pituitary-gonadal 
axis) have expanded the use of these drugs to the treatment 
of obesity, insulin resistance, and related metabolic disorders, 
the prevention of cardiovascular disease, and the manage-
ment of PCOS. 

Animal studies using liraglutide have shown that the drug 
affects ovarian follicle development by regulating the ovarian 
phosphoinositide 3-kinase (PI3K) / protein kinase B (PKB/
AKT) pathway and the phosphorylation of FOXO1 proteins [69]. 
Research on dulaglutide in rats has shown that it can reduce 
androgen levels as a result of the upregulation of sex hormone 
binding globulin (SHBG) in rat serum. In addition, it upregulates 
the expression of 3β-hydroxysteroid dehydrogenase (3βHSD), 
cytochrome P450 family 19 subfamily a member 1 (CYP19α1), 
and steroidogenic acute regulatory protein (StAR) genes and 
proteins, which inhibits the formation of cysts and pus in the 
ovaries of PCOS rats [70]. Similar effects have been observed 
in exenatide studies, with increased numbers of cystic follicles, 
and reduced corpus luteum [71], and restoration of regular 
menstrual cycles [72]. Dehydroepiandrosterone-induced PCOS 
mice treated with liraglutide were also able to restore nor-
mal menstrual cycles [73]. However, in a study of rats treated 
with a dihydrotestosterone (DHT) pellet, no improvement in 
menstrual cycle regularity was observed [74, 75, 76, 77, 78, 79, 
80, 81, 82]. 

In clinical trials, treatment with GLP-1 analogs leads to sig-
nificant weight loss in patients with PCOS [62, 63, 64, 65, 66, 
67, 68]. Liraglutide, like exenatide, can significantly reduce 
inflammation and atherothrombosis markers such as inflam-
mation, endothelial function, and coagulation [56, 69, 70]. It 
has also been shown to significantly reduce serum endothe-
lial adhesion markers: soluble platelet selectin (sP-selectin), 
soluble intercellular adhesion molecule (sICAM), soluble vas-
cular cell adhesion molecule (sVCAM), and clot lysis area [83, 
84, 85, 86, 87] (Fig. 2). 

SHBG – sex hormone-binding globulin 

FIGURE   2. The influence of glucagon-like peptide-1 receptor agonists  
(GLP-1RAs) administration on polycystic ovary syndrome (PCOS) management

A reduction in adipose tissue deposition decreases the 
inflammatory status and the concentration of circulating 
cytokines. This results in the inhibition of cyst formation, 
which, together with decreased androgen levels and increased 
SHBG levels, leads to the regulation of menstrual cycles and 
the increased number of pregnancies (Fig. 2). 

Liraglutide improved ovarian function, decreased testoster-
one levels, increased SHBG levels, decreased ovarian size, and 
decreased mean body weight [71, 72]. Similar effects were seen 
in patients treated with exenatide [66, 69, 73]. Glucagon-like  
peptide-1 analogs may also increase the number of normal 
menstrual cycles [66, 71, 74] and increase the number of preg-
nancies in treated women with PCOS, especially in patients 
using liraglutide-metformin combination therapy [65, 71, 73]. 

CONCLUSIONS 

The wide range of applications of GLP-1 analogs is the reason 
for their growing interest among clinicians of many disciplines. 
The treatment of type 2 diabetes is undoubtedly one of the most 
important applications of the drugs but the actions of GLP-1 
analogs, including increasing insulin sensitivity, decreasing 
circulating insulin levels, anorexiogenic effect, and weight 
loss, make the drug an important tool in the fight against obe-
sity and related metabolic disorders. Glucagon-like peptide-1 
analogs positively affect adipose tissue by regulating lipid 
uptake, storage, and lipolysis in WAT, accelerating its metab-
olism and reducing inflammation. Patients using GLP-1RAs 
have improved lipid profiles, reduced visceral fat accumula-
tion, and improved glucose tolerance. Glucagon-like peptide-1 
analogs also have beneficial effects on adipocyte browning and 
reduce systemic levels of molecules associated with insulin 
resistance by increasing their catabolism in BAT. The intro-
duction of GLP-1 analog treatment in women with PCOS could 
help manage the disease, improve the quality of life of PCOS 
patients, and increase their chances of conceiving and car-
rying a pregnancy to term. However, because of the limited 
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research on the effects of GLP-1 analogs on pregnancy and the 
developing fetus, it is important to instruct the patient to use 
birth control during treatment and to discontinue treatment 
prior to conception. 
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