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ABSTRACT
Elevated levels of lead ions (Pb2+) in the bloodstream present 
a fatal risk to all age demographics. Furthermore, a wealth of 
research underscores that chronic exposure to even low, non-
symptomatic doses can trigger developmental disorders in chil-
dren. Various studies have illustrated the competitive nature 
of Pb2+ with divalent metals from the metabolic pool, notably 
calcium ions (Ca2+). By exploiting transport pathways and bind-
ing sites on specific proteins, Pb2+ can infiltrate nearly every 
organ, including the brain. The N-methyl-D-aspartate receptor  

 
(NMDAR) is recognized as one of the key molecular targets for 
Pb2+. Mitochondria are also the subject of many studies investi-
gating the toxicity of lead. Maintaining the health of the fragile 
developing nervous system during prenatal and neonatal stages 
necessitates diligent monitoring and reassessment of what con-
stitutes safe lead ion concentrations in the bloodstream. 
Keywords: divalent metals; lead; mitochondria; neurotoxic-
ity; neurodegenerative disorders; NMDAR; oxidative stress; 
synaptic conduction. 

INTRODUCTION 

Human use of lead has a long history, with its earliest known 
applications dating back to 7500 BCE. The metal’s availability, 
together with its unique physical and chemical traits, fueled its 
widespread adoption worldwide. Yet, as the centuries unfolded 
and the uses of lead multiplied, its harmful health implications 
began to eclipse its utility. 

The late 18th century ushered in the Industrial Revolution, 
a crucial juncture in lead exploitation, resulting in widespread 
human exposure to a plethora of lead compounds and the begin-
ning of research into the metal’s toxicological attributes. In 
the 20th century, lead poisoning became a well-documented 
phenomenon, largely traced back to the pervasive presence of 
lead in everyday commodities like paint, batteries, and gasoline. 
The absorption pathways of lead have been discovered, along 
with the diverse interaction of the element with the systems 
of the human body. Efforts have been made to reduce the envi-
ronmental emissions of lead by implementing measures such 
as the ban on the sale of leaded gasoline in the United States 
in 1986 and in Europe in 2005 [1, 2]. 

Despite significant cutbacks in its usage, lead is still com-
mon in various sectors including industry, construction, and 
transportation. Especially alarming is the affinity of lead ions 
(Pb2+) for neural structures. Though the full spectrum of lead’s 
direct and indirect effects on neuronal development and func-
tion remains unexplained, a clear correlation has been estab-
lished between exposure to lead compounds and the onset of 
certain neurological disorders. 

Elevated levels of Pb2+ in the bloodstream present a fatal risk 
to all age demographics. Furthermore, a wealth of research 
underscores that chronic exposure to even low, non-sympto-
matic doses can trigger developmental disorders in children [3, 

4]. The role of Pb2+ in the pathogenesis of autism, attention defi-
cit hyperactivity disorder, and schizophrenia has been high-
lighted [5]. Additionally, early-life lead exposure may hasten 
neurodegenerative changes, potentially leading to conditions 
like Alzheimer’s or Parkinson’s disease later in life [6]. 

Given these potential risks, maintaining the health of the 
fragile developing nervous system during prenatal and neo-
natal stages necessitates diligent monitoring and reassess-
ment of what constitutes safe lead ion concentrations in the 
bloodstream. Until 2012, the term “level of concern” was used 
to refer to children, indicating a minimum blood lead concen-
tration of 10 µg/dL. This concept was replaced by the blood 
level reference value, which represents the average blood lead 
concentration in this age group. Currently, the accepted value 
for this reference is 3.5 µg/dL [7].

ABSORPTION AND DISTRIBUTION PATHWAYS OF 
LEAD IN THE BODY 

The absorption of lead via inhalation primarily depends 
on particle size and solubility. Studies have revealed that small 
inorganic lead particles in aerosol form (less than 1 µm) are 
absorbed with striking efficiency – approx. 95% – within the 
bronchiolar-alveolar region [8]. Conversely, larger particles 
(exceeding 2.5 µm) are usually ensnared by the ciliated epithe-
lium of the upper respiratory tract and subsequently expelled 
to the nasopharyngeal region and then swallowed [9]. When 
it comes to organic forms of lead, such as tetraethyllead and 
tetramethyllead, the absorption rate is estimated to range 
between 60–80% [10]. 

Lead absorption via the gastrointestinal tract remains 
an intricate process with many unknowns. The potential 
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mechanisms for both transcellular and paracellular transport 
through the intestinal epithelium are currently under scrutiny. 
It has been ascertained that inorganic lead compounds are 
most effectively absorbed from the duodenum after forming 
complexes with phosphates and bile acid residues [11]. The pos-
sibility of membrane carriers for ionized lead, akin to those for 
calcium and iron ions (Fe2+), which facilitate active transport 
across mucous and serous membranes or into enterocytes, 
remains a viable hypothesis [12, 13]. 

Several factors are known to modulate the efficiency of lead 
absorption through the gastrointestinal tract, including age, 
the volume of gastrointestinal content, dietary calcium and 
iron content, pregnancy status, lead dose, and the bioavail-
ability of lead compounds [14, 15, 16, 17]. It is noteworthy that, 
statistically, the gastrointestinal tract is the primary avenue 
for lead intoxication in children [18]. 

Transdermal absorption is seemingly of minor quantitative 
relevance for inorganic forms of lead. Notably, trace amounts 
of lead in the blood correlate with observable levels of lead 
compounds in the outermost layers of the stratum corneum 
in individuals with occupational exposure [19]. The absorption 
of tetraalkyl lead compounds is considerably more efficient, as 
shown in studies on rodent skin exposed to tetraethyllead [20]. 

Regardless of the route of absorption, inorganic lead infil-
trates the bloodstream, where it binds to red blood cells in 
99% [21, 22]. Several mechanisms for the transport of Pb2+ 
across the erythrocyte cell membrane have been put forth. 
The process likely involves HCO3

–-dependent anion exchangers, 
and the possibility of calcium channel involvement cannot be 
discounted [23, 24]. Within the erythrocyte, Pb2+ bind to pro-
tein ligands, primarily delta-aminolevulinic acid dehydratase 
(ALAD) [25]. It is postulated that the release of lead from eryth-
rocytes likely involves active transport via Ca2+-ATPase [26]. 

A significant proportion of Pb2+ ions – approx. 90% – grad-
ually accumulates in bones due to their propensity to form 
complexes with phosphate residues, much like calcium 
ions (Ca2+) [27]. The ensuing deposits, structurally akin 
to hydroxyapatites, ensure consistent availability of Pb2+, 
even amidst declines in the element’s blood concentration due 
to excretion. Conditions marked by predominant osteolytic 
processes lead to an enhanced release of lead from this bone 
reservoir, followed by redistribution to other organs [28, 29]. 
Beyond bones, lead primarily accumulates in organs including 
the liver, skeletal muscles, skin, adipose tissue, lungs, kidneys, 
aorta, and brain [27, 30]. The precise transport mechanism 
of lead to soft tissues remains a mystery; however, it is sug-
gested that lead may utilize pathways originally designed for 
Ca2+ and Fe2+. 

TRANSPORT OF LEAD IONS TO THE CENTRAL 
NERVOUS SYSTEM 

Entry into the intricate and delicate environment of the cen-
tral nervous system is constrained by the blood–brain barrier 
(BBB) – a specialized formation comprising tightly conjoined 

endothelial cells of brain capillaries, enveloped by astrocytic 
processes [31]. Despite the BBB’s selective ion permeability –  
integral to the delivery of vital macro- and micronutrients 
to the brain – lead, in its ionic state, can permeate it via sim-
ple diffusion or by forming inorganic compounds depend-
ent on anion exchangers. This transportation process may 
involve voltage-dependent calcium channels (VDCC), calcium 
release-activated channels, and potentially the transport pro-
tein DMT1 [32, 33, 34]. The release of Pb2+ into the bloodstream 
implicates Ca2+-ATPase, mirroring the mechanism observed 
in red blood cells [35]. 

Severe symptomatic lead poisoning has been proven 
to directly impair and compromise the structural integrity 
of the BBB, while concentrations beneath 80 μg/dL do not elicit 
discernible structural changes [36, 37]. A linear association 
has been established between the maturation of the BBB and 
the concentration of Pb2+ accumulated in representative brain 
regions, such as the hippocampus, underscoring the neuropro-
tective importance of a properly functioning, fully matured 
barrier [38, 39]. 

Performing a function analogous to the BBB, the blood–cer-
ebrospinal fluid barrier (BCB) consists of endothelial cells of 
the choroid plexus vessels in direct contact with cerebrospinal 
fluid. The deleterious effects of lead on the BCB appear to be 
more severe in children than in adults. The inhibitory influ-
ence of Pb2+ on the expression of claudin-1, a protein integral 
to intercellular junctions of the endothelium, indicates that it 
may compromise BCB’s integrity during its development [40]. 
Lead’s impact on the functionality of the choroid plexus is fur-
ther exemplified by diminished transthyretin expression, a pro-
tein crucial for the transport of thyroid hormones that are 
essential for brain development [41]. 

IMPACT OF LEAD ON GLIAL CELLS 

Astrocytes serve as a bridge between endothelial cells and 
neurons. Research has shown that these types of glial cells 
have the capacity to accumulate significant concentrations of 
Pb2+, thus restricting the spread of Pb2+ in the central nervous 
system [42, 43]. The entry of lead into astrocytes likely occurs 
through L-type VDCC [44]. Intracellular organization of lead 
deposits bypasses the mitochondrial network, preserving the 
energetic efficiency of astrocytes [42]. The process of Pb2+ accu-
mulation is most efficient in immature astroglia, resulting in the 
inhibition of the expression of specific proteins necessary for 
the physiological progression of the cell cycle [45]. Prolonged 
exposure leads to altered cell morphology, improper distribution 
of mitochondria and Golgi apparatus, expansion of the endo-
plasmic reticulum, and excessive production of gliofilaments. 
Regions of astrocyte proliferation become apparent, particu-
larly in the hippocampus and prefrontal cortex [46]. Potential 
disruptions in the interaction between Pb2+-burdened astro-
cytes and endothelial cells can result in dysfunction of brain 
capillaries [42]. The limited Pb2+ buffering capacity in astro-
glial cells poses a potential threat to more vulnerable neurons. 
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Oligodendrocytes play a crucial role in the formation of myelin 
sheaths in the central nervous system. It has been demonstrated 
that oligodendroglia exhibits a particular vulnerability to the 
toxic effects of lead, especially during the early stages of cell dif-
ferentiation [47]. The direct effects include the inhibition of olig2 
transcription factor expression, CNPase protein levels, and the 
suppression of sodium-calcium exchanger 3 activity [48]. Con-
sequently, this disrupts the regulation of intracellular calcium 
concentration, leading to the arrest of oligodendrocyte devel-
opment at the precursor stage and a significant reduction in 
the efficiency of myelination and remyelination processes [49]. 

IMPACT OF LEAD ON NEURONS 

Ionic disturbances 
When discussing the direct effects of lead exposure on the cen-
tral nervous system, it is crucial to consider the interactions 
between Pb2+ and the metabolic pathways of specific cations. 
Lead enters the interior of neurons through at least 3 membrane 
transport mechanisms. The first mechanism does not involve 
any carrier proteins, while the involvement of VDCC and NMDA-

-activated channels is suggested in the other mechanisms [50]. 

Calcium 
Under physiological conditions, VDCC facilitates the transport 
of Ca2+ into cells. Maintaining a low intracellular concentra-
tion of Ca2+ is necessary in the resting state of presynaptic 
neuron membranes. Depolarization triggers the opening of 
VDCC, allowing calcium influx to form complexes with pro-
teins involved in synaptic vesicle formation. Lead likely binds 
to the extracellular region of VDCC, blocking the channel’s 
access to Ca2+ while promoting the transport of Pb2+ into the 
neuron [51]. Lead exhibits a high affinity for protein domains 
dedicated to Ca2+, influencing pathways involved in neuro-
transmitter release. Calmodulin is activated through the bind-
ing of Ca2+ to EF hand domains. At nanomolar concentrations, 
lead inappropriately occupies these domains, partially stimu-
lating calmodulin and its dependent phosphodiesterase [52]. 
Conversely, higher concentrations of Pb2+ lead to a reduction 
in calmodulin activity, possibly due to the availability of addi-
tional binding sites and allosteric modifications of the pro-
tein [53]. The influence of Pb2+ on the expression of genes related 
to calmodulin has been demonstrated [54]. Changes in calm-
odulin metabolism result in disruptions in signal transmis-
sion at the synaptic level. Another protein susceptible to the 
effects of Pb2+ is protein kinase C (PKC), with certain isoforms 
depending on Ca2+. Protein kinase C plays various roles in cells, 
contributing to the initiation of signaling pathways that acti-
vate transcription factors. It has been shown that picomolar 
concentrations of Pb2+ partially activate the enzyme, while 
higher concentrations can have inhibitory effects on PKC [55]. 

Zinc 
Zinc serves essential functions in the body, including the for-
mation of complexes with proteins involved in antioxidant 

processes. It also complements specific Cys2-His2 domains 
in zinc finger proteins, which are transcription factors that 
bind to specific DNA sequences. It has been shown that Pb2+ 
competes with zinc ions (Zn2+) for binding sites on various zinc 
finger proteins due to its high affinity for thiol groups [56]. 
Consequently, this leads to the inhibition of specific transcrip-
tion factors necessary for the proper development of the cen-
tral nervous system, such as TFIIIA, Sp1, and Egr-1 [57, 58, 59]. 

Zinc ions are also crucial for the proper functioning of ALAD 
in red blood cells. Lead ions show a high affinity to the sulfhy-
dryl groups present in ALAD subunits, which originally bind 
zinc as a cofactor [25]. The inclusion of Pb2+ inhibits ALAD activ-
ity, resulting in a decrease in heme synthesis and the produc-
tion of free radicals [60]. This lead-induced anemia poses an 
indirect threat to brain energy metabolism. 

An important mechanism of lead neurotoxicity is its interac-
tion with the N-methyl-D-aspartate receptor (NMDAR), whose 
activation depends, in part, on the presence of zinc. While the 
precise binding site of Pb2+ to the receptor is still uncertain, 
the antagonism of lead against NMDAR has been demon-
strated, with 1 potential target being the allosteric binding 
site of Zn2+ [61]. Consequently, the blockade of NMDAR leads 
to a decline in the ability to acquire cognitive functions and 
shape memory through the mechanism of long-term synaptic 
potentiation (LTP) [62]. 

Changes in neurotransmission 
The NMDAR belongs to the ionotropic, heteromeric receptors 
for glutamate [63]. It plays a significant role in glutamatergic 
neurotransmission, serving as a key player in shaping syn-
aptic plasticity through the mechanism of LTP [64]. This pro-
cess occurs during the development of neuronal pathways 
and the formation of memory traces, which is why NMDAR 
exhibits high expression levels in the hippocampus, cerebral 
cortex, and basal ganglia [65]. Selective blockade of the receptor 
using aminophosphonovaleric acid in rat brain cells resulted in 
a noticeable decline in learning and memory abilities compa-
rable to states of hippocampal damage [66]. On the other hand, 
the detrimental effects of excessive NMDAR stimulation have 
also been demonstrated, leading to the uncontrolled influx of 
Ca2+ into neurons and neuronal apoptosis [67]. 

The receptor consists of the NR1 subunit, which is present in 
every NMDAR variant, and one of the NR2 subunits (A, B, C, or 
D), whose type depends on the stage of cell development and the 
location within the body [68]. During the prenatal and neonatal 
periods, the NR2B-NMDAR form predominates and gradually 
gets replaced and supplemented by the NR2A-NMDAR form or, 
in the case of the cerebellum, the NR2C-NMDAR form [38, 68]. 
In fully developed brains, specific regions of receptor locali-
zation, such as the forebrain and posterior horns of the spinal 
cord, exhibit the NR2B subunit [69, 70]. 

In mature glutamatergic synapses, the production and 
release of presynaptic vesicles containing the neurotrans-
mitter stimulate the NR2A-NMDAR on the postsynaptic mem-
brane. The complete activation of the receptor is a multifac-
eted process involving the binding of glutamate and glycine, 
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depolarization-induced removal of the magnesium ions (Mg2+) 
block, and the involvement of Zn2+ as a cofactor. The channel 
associated with NMDAR mediates the flow of Ca2+, sodium 
(Na+), and potassium (K+) ions [65]. Controlled elevation of 
intracellular Ca2+ concentration in the postsynaptic cell pro-
motes cascades of events involving calcium-binding proteins 
such as calmodulin and PKC. 

The activated NMDAR influences the phosphorylation path-
way of the cAMP response element-binding protein (CREB), 
which is a transcription factor necessary for the synthesis of 
brain-derived neurotrophic factor (BDNF). Released retro-
gradely from the postsynaptic cell, BDNF plays a crucial role 
in strengthening the signal in glutamatergic synapses by acti-
vating the tropomyosin receptor kinase B in the presynaptic 
cell [71]. Stimulation of presynaptic terminals enhances the 
production of vesicles containing glutamate and mobilizes pro-
teins from the SNARE family to participate in neurotransmitter 
release [72]. In this way, brief high-frequency neuronal stimu-
lation leads to long-term enhancement of synaptic transmis-
sion effectiveness, exemplifying the essence of the LTP model. 
The significance of BDNF in this process is underscored by the 
promising results of pharmacological trials for Alzheimer’s 
disease using agents that increase BDNF levels [73]. 

The NMDAR is recognized as one of the key molecular tar-
gets for Pb2+ [74]. Lead’s affinity for the NR2A subunit and non-
competitive inhibition of the allosteric Zn2+ binding site are 
suggested mechanisms [62]. This leads to the blockade of recep-
tor activation and the inability to open the ion channel. The 
impermeability of the postsynaptic membrane to Ca2+ inhibits 
pathways involved in protein phosphorylation that modulates 
synaptic transmission [75]. Additionally, there is an exces-
sive expression of NR2B-NMDAR in extrasynaptic locations, 
indirectly inhibiting the pathway associated with CREB [76]. 
This results in a reduced level of BDNF protein, disruption of 
feedback signaling, and insufficient reinforcement of synaptic 
transmission for efficient memory retention. 

Other direct targets for Pb2+ are the proteins involved in 
the organization of synaptic vesicles and the release of neu-
rotransmitter into the synaptic space. Lead has been shown 
to have inhibitory effects on the expression of synaptophysin  
and synaptobrevin , proteins responsible for vesicle docking 
to the presynaptic membrane [77]. Dysfunction of synaptotag-
min due to Pb2+ binding at the Ca2+ binding site manifests as 
impaired vesicle fusion and a decrease in neurotransmitter 
release [78]. 

Mitochondrial metabolism 
The central nervous system exhibits particularly intense energy 
metabolism. Insufficient substrate supply or impairment of any 
step in adenosine triphosphate (ATP) synthesis poses a lethal 
threat to neurons, leading to cognitive impairments, loss of 
consciousness, or even death. Key steps of cellular aerobic 
metabolism take place in mitochondria, semi-autonomous 
organelles with a double membrane system. Differences in 
the permeability of mitochondrial membranes give rise to the 
intermembrane space and the mitochondrial matrix, which 

have distinct chemical and enzymatic compositions. The inner 
membrane houses complexes I–IV of the electron transport 
chain (ETC), which generate a proton gradient used by ATP 
synthase to carry out oxidative phosphorylation. 

Currently, mitochondria are the subject of many studies 
investigating the toxicity of lead, which report new potential 
molecular targets for Pb2+ [79]. The rationale behind these 
investigations is based on the interactions of Pb2+ with cation 
pathways and the possibility of their substitution in mitochon-
drial protein composition. The potential competition between 
Pb2+ and ions such as: manganese (Mn2+), Fe2+, copper (Cu2+), and 
Zn2+ poses a risk to mitochondrial homeostasis, particularly 
in terms of losing control over the concentration of oxidative 
factors [80]. For example, reactive oxygen species (ROS) are 
products of physiological processes in the ETC. At low concen-
trations, ROS can participate in intercellular signaling, and their 
excess is reduced by specific enzymes such as glutathione (GSH) 
peroxidase, catalase, and superoxide dismutase. The presence 
of lead inhibits antioxidant enzymes and depletes the capacity 
for ROS processing by GSH and natural antioxidants, leading 
to severe cell damage or death [81]. Particularly harmful is 
the peroxidation of polyunsaturated fatty acids, resulting in 
the production of malondialdehyde (MDA) and 4-hydroxyn-

-onenal, toxic aldehydes that alter the physical properties of 
cell membranes and form complexes with enzymatic proteins 
and nucleic acids [82]. 

One of the functions of mitochondria is initiating apoptotic 
pathways in response to external or internal signaling stimuli. 
The primary process preceding cascades of apoptotic changes 
is the opening of mitochondrial permeability transition pores 
(MPTP). The lead’s role as an inducer of apoptosis seems to be 
related to its impact on cellular Ca2+ metabolism. A proposed 
mechanism involves Pb2+ interacting with endoplasmic reticu-
lum calcium release receptors [83]. Sustained high cytoplasmic 
Ca2+ concentration stimulates calcium influx into mitochondria, 
leading to MPTP opening. 

It has been demonstrated that Pb2+ can promote apoptosis 
in neurons not only by modifying the permeability of mito-
chondrial membranes but also by disrupting the expression of 
mitochondrial nucleic acids. This impact is manifested through 
an increase in the release of cytochrome c, particularly det-
rimental is the peroxidation of polyunsaturated fatty acids, 
resulting in the production of MDA and 4-hydroxynonenal, 
toxic aldehydes that alter the physical properties of cell mem-
branes and form complexes with enzymatic proteins and nucleic 
acids [82]. Additionally, it affects the expression of caspase  
3 and 9, an excessive ratio of Bax to Bcl-2, and the activation 
of p53 protein [84]. 

INDIRECT NEUROTOXIC EFFECTS 

The central nervous system’s maturation relies on a network of 
systemic metabolic pathways which can be adversely affected 
by exposure to lead. Specifically, the impact of Pb2+ triggers 
a reduction in the activity of an enzyme called aminolevulinic 
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acid (ALA) dehydratase, which in turn leads to impaired heme 
synthesis and the accumulation of delta-aminolevulinic acid 
(δ-ALA) in red blood cells [25]. This unstable compound trans-
forms into a self-oxidizing enolic form, which generates singlet 
oxygen (O2•−) and hydrogen peroxide (H2O2) when reacting with 
oxyhemoglobin. Both O2•− and H2O2 play a role in generating 
highly reactive hydroxyl radicals, potentially amplifying oxida-
tive stress [85]. An elevated level of δ-ALA also inhibits neuro-
transmission involving γ-aminobutyric acid (GABA). Although 
the exact mechanism behind this occurrence remains unclear, 
it likely involves the inhibition of potassium-dependent GABA 
release by synaptosomes or complications with the binding of 
GABA by synaptic membrane receptors [86]. 

Furthermore, lead’s influence on the body’s iron metabo-
lism is a significant concern. The availability of Fe2+ is crucial 
for numerous processes vital for the developing brain, such 
as oxygen binding and transport, the Krebs cycle, oxidative 
phosphorylation, lipid metabolism, and nucleic acid synthesis 
and expression [87]. Lead ions can decrease Fe2+ absorption 
in the intestines, potentially leading to severe iron deficiency, 
sideropenic anemia, and failure of bioenergetic processes. The 
reduced uptake of Fe2+ from the gastrointestinal tract might be 
due to competition for binding sites of divalent metal transport-
ers [88]. Another detrimental effect involves the obstructed 
removal of Fe2+ from the brain because Pb2+ inhibits the expres-
sion of ferroportin 1, a protein responsible for iron transport 
from cells into the bloodstream [89]. 

CONCLUSION 

The progress made in understanding the molecular mecha-
nisms of Pb2+ sheds light on the inherent risks and utter redun-
dancy of lead’s presence within the body. Various studies have 
illustrated the competitive nature of Pb2+ with divalent metals 
from the metabolic pool, notably Ca2+. By exploiting transport 
pathways and binding sites on specific proteins, Pb2+ can infil-
trate nearly every organ, including the brain. 

A significant concern stems from the metal’s tendency 
to accumulate in bones, thereby leading to continuous expo-
sure to lead’s detrimental effects on vital tissues, irrespective 
of whether the exposure occurred several years prior. Whether 
present in high concentrations or even at subthreshold low 
levels, lead disrupts neuronal homeostasis. It hampers syn-
aptic conduction mechanisms, obstructs the formation of new 
neuronal connections, and diminishes the efficiency of the 
brain’s energy processes. 

During its developmental phase, the central nervous sys-
tem is particularly vulnerable to the adverse effects brought 
about by Pb2+. Moreover, an asymptomatic, hidden long-term 
lead intoxication can potentially precipitate serious cognitive 
impairments and accelerate neurodegenerative processes 
later in life. 
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