Bioabsorbable versus metallic screw fixation in pediatric traumatology

Gabriela Grochowska, Piotr Gajewski, Elżbieta Gawrych, Ireneusz Walaszek, Kaja Giżewska-Kacprzak

Abstract


ABSTRACT

Introduction: Metal stabilizing implants used in pediatric fractures have to be removed to not inhibit the growth of bones. Bioabsorbable implants can save children from surgical removal of the fixating material. As there have been only a few reports regarding children, we decided to evaluate the clinical advantages of bioabsorbable screws in the treatment of selected bone fractures in pediatric traumatology.

Materials and methods: The study group included 35 patients with bone fractures aged 5–17 years (mean 13.2 years) fixed with LactoSorb® bioabsorbable screws made of polymeric lactic acid and polyglycolic acid. The follow-up was compared with a matched control group of 35 children that underwent operative fixation of the same type of fractures with metal screws.


Results: Clinical and radiological follow-up showed that bone unions were obtained in all cases, with no signs of osteolysis. The time of immobilization was slightly shorter in the study group (5.5 weeks) than among controls (6.2 weeks; p = 0.038). There were no differences in complications, wound infections, pain management and time of hospitalization between both groups.

Conclusions: The use of bioabsorbable material in the treatment of fractures in pediatric traumatology is a safe alternative to metal stabilizing devices, with clinical benefits for young patients including no necessity of a second surgery and anesthesia.


Keywords


biowchłanialne implanty; śruby kostne; złamania kości; traumatologia

Full Text:

PDF

References


Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ. The epidemiology of fractures in England. J Epidemiol Community Health 2008;62(2):174-80. doi: 10.1136/jech.2006.056622.

Jones G. Growth, children, and fractures. Curr Osteoporos Rep 2004;2(3):75-8.

Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemio¬logy of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res 2004;19(12):1976-81. doi: 10.1359/JBMR.040902.

Rennie I, Court-Brown CM, Mok JY, Beattie TF. The epidemiology of fractures in children. Injury 2007;38(8):913-22. doi: 10.1016/j.injury.2007.01.036.

Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg 1966;93(5):839-43.

Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 1971;5(3):169-81. doi: 10.1002/jbm.820050305.

Mollaoglu N, Cetiner S, Alpaslan C, Gültekin SE, Alpar R. The early tissue response titanium and LactoSorb screws. Dent Traumatol 2003;19(3):139-48.

Fraser RK, Cole WG. Osteolysis after biodegradable pin fixation of fractures in children. J Bone Joint Surg Br 1992;74(6):929-930.

Benz G, Kallieris D, Seeböck T, McIntosh A, Daum R. Bioresorbable pins and screws in paediatric traumatology. Eur J Pediatr Surg 1994;4(2):103-7. doi: 10.1055/s-2008-1066078.

Kurpad SN, Goldstein JA, Cohen AR. Bioabsorbable fixation for congenital pediatric craniofacial surgery: a 2-year follow-up. Pediatr Neurosurg 2000;33(6):306-10. doi: 10.1159/000055976.

Kushner KD. Podiatric Medicine and Surgery Part II. National Board Review. McGraw-Hill Education Medical Publishing Division 2006;23-28.

Bugbee WD, Sychterz CJ, Engh CA. Bone remodeling around cementless hip implants. South Med J 1996;89(11):1036-40.

Rokkanen P, Böstman O, Vainionpää S, Vihtonen K, Törmälä P, Laiho J, et al. Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet 1985;22,1(8443):1422-1424.

Rokkanen PU, Böstman O, Hirvensalo E, Makela EA, Partio EK, Patiala H, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 2000;21(24):2607-13.

Waris E, Ashammakhi N, Raatikainen T, Törmälä P, Santavirta S, Konttinen YT. Self-reinforced bioabsorbable versus metallic fixation systems for metacarpal and phalangeal fractures: A biomechanical study. J Hand Surg 2002;27(5):902-9.

Waris E, Ashammakhi N, Happonen H, Raatikainen T, Kaarela O, Törmälä P, et al. Bioabsorbable miniplating versus metallic fixation for metacarpal fractures. Clin Orthop Relat Res 2003;410:310-9. doi: 10.1097/01.blo.0000063789.32430.c6.

Waris E, Ninkovic M, Harpf C, Ninkovic M, Ashammakhi N. Self-reinforced bioabsorbable miniplates for skeletal fixation in complex hand injury: three case reports. J Hand Surg 2004,29(3),452-7. doi: 10.1016/j.jhsa.2004.01.013.

Waris E, Ashammakhi N, Kaarela O, Raatikainen T, Vasenius J. Use of bioabsorbable osteofixation devices in the hand. J Hand Surg 2004;29(6),590-8. doi: 10.1016/j.jhsb.2004.02.005.

Fuchs M, Vosshenrich R, Dumont C, Sturmer KM. Refixation of osteochondral fragments using absorbable implants. First results of a retrospective study. Chirurg 2003;74(6):554-61. doi: 10.1007/s00104-003-0623-9.

Al-Sukhun J, Törnwall J, Lindqvist C, Kontio R. Bioresorbable poly-L/DL-lactide (P-[L/DL] LA 70/30) plates are reliable for repairing large inferior orbital wall bony defects: a pilot study. J Oral Maxillofac Surg 2006;64(1):47-55. doi: 10.1016/j.joms.2005.09.013.

Li Y, Li SP. Cytotoxicity evaluation of biodegradable polylactic acid-chitin plates in osteosynthesis in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2007;27(1):65-8.

Dumont C, Fuchs M, Burchhardt H, Appelt D, Bohr S, Stürmer KM. Clinical results of absorbable plates for displaced metacarpal fractures. J Hand Surg 2007;32(4):491-6. doi: 10.1016/j.jhsa.2007.02.005.

Peiji W, Qirong D, Jianzhong Q, Huavi W, Kailong Z, Nan Y. Intramedullary fixation in digital replantation using bioabsorbable Poly-DL-Lactic Acid rods. J Hand Surg 2012;37(12):2547-52. doi: 10.1016/j.jhsa.2012.09.022.

Kujala S, Raatikainen T, Kaarela O, Ashammakhi N, Ryhänen J. Successful treatment of scaphoid fractures and nonunions using bioabsorbable screws: report of six cases. J Hand Surg 2004;29A:68-73.

Eppley BL, Sadove AM, Havlik RJ. Resorbable plate fixation in pediatric craniofacial surgery. Plast Reconstr Surg 1997;100(1):1-13.

Bozic KJ, Perez LE, Wilson DR, Fitzgibbons PG, Jupiter JB. Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation. J Hand Surg 2001;26(4):755-61. doi: 10.1053/jhsu.2001.24145.

Jukkala-Partio K, Laitinen O, Vasenius J, Partio EK, Vasenius J, Toivonen T, et al. Healing subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep. Arch Orthop Trauma Surg 2002;122(6):360-4. DOI: 10.1007/s00402-001-0379-y.

Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 2000;106(5):1036-45.

Podeszwa DA, Wilson PL, Holland AR, Copley LA. Comparison of bioabsorbable versus metallic implant fixation for physeal and epiphyseal fractures of the distal tibia. J Pediatr Ortop 2008;28(8):859-63. doi: 10.1097/BPO.0b013e31818e19d7.

Gaiarsa GP, Dos Reis PR. Comparative study between osteosynthesis in conventional and bioabsorbable implants in ankle fractures. Acta Ortop Bras 2015;23(5):263-7.

Van der Eng DM, Schep NW, Schepers T. Biabsorbable versus metallic screw fixation for tibiofibular syndesmotic ruptures: ameta-analysis. J Food Ankle Surgery 2015;54(4):657-62. doi: 10.1053/j.jfas.2015.03.014.




DOI: https://doi.org/10.21164/pomjlifesci.480

Copyright (c) 2018 Gabriela Grochowska, Piotr Gajewski, Elżbieta Gawrych, Ireneusz Walaszek, Kaja Giżewska-Kacprzak

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/