The effects of ultrasound and shockwave treatment on muscle regional oxygen saturation using near-infrared spectroscopy

Anna Lubkowska, Aleksandra Radecka, Miłosz Parchimowicz, Iwona Bryczkowska, Monika Chudecka

Abstract


ABSTRACT

Introduction: Therapeutic pressure waves are often used to treat various musculoskeletal disorders but the biological effect is still not fully known. This study investigating the effects of sound waves of different stimulus strength used in ultrasound therapy (UST) and radial extracorporeal shockwave therapy (rESWT) treatments on muscle oxygen saturation and surface temperature in terms of the trophic effect, using near-infrared spectroscopy.

Materials and methods: 41 healthy volunteers including 27 ones treated with UST and 14 ones treated with rESWT: aged 22–48 years. Oxygen saturation and surface temperature measurements of the infraspinatus muscle region were repeated 4 times: immediately before (T0) and after the treatment (T1), and 15 min (T2) and 30 min after the treatment (T3). Muscle oxygen saturation was measured at 2 depths: 20 mm (sensor 1 – S1) and 12.5 mm (sensor 2 – S2).

Results: The value of regional oxygen saturation (rSO2 [%]) statistically significantly decreased immediately after 15 and 30 min following the treatment in the subjects treated with UST. The baseline values, amounting to 71.26 ±5.47% (S1) and 88.26 ±2.89% (S2) for respective depths, significantly decreased following the treatment to 68.89 ±5.26% (T2) and 68.93 ±5.12% (T3) at a measuring depth of 20 mm and to 86.63 ±5.37% (T1) and 86.52 ±3.38% (T2) at a measuring depth of 12.5 mm.

Conclusions: The results obtained indicate only the treatment with UST has a significant effect on changes in regional oximetry, which induces deep hyperaemia and increased temperature of the deeper tissues, promoting the de-dissociation of oxygen from haemoglobin to tissues, inducing the trophic effect.

Keywords


near infrared spectroscopy; near-infrared spectroscopy; ultrasound therapy; extracorporeal shockwave therapy

References


Paliwal S, Mitragotri S. Therapeutic opportunities in biological responses of ultrasound. Ultrasonics 2008;48(4):271-8. doi: 10.1016/j.ultras.2008.02.002.

Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 2012;31(4):623-34.

Alexander LD, Gilman DR, Brown DR, Brown JL, Houghton PE. Exposure to low amounts of ultrasound energy does not improve soft tissue shoulder pathology: a systematic review. Phys Ther 2010;90(1):14-25. doi: 10.2522/ptj.20080272.

Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies. Phys Ther 2001;81(7):1339-50.

Suslick KS. Ultrasound: its chemical, physical, and biological effects. Science 1989;243(4897):1499.

ter Haar GS, Daniels S. Evidence for ultrasonically induced cavitation in vivo. Phys Med Biol 1981;26(6):1145-9.

Feril LB, Kondo T. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res 2004;45(4):479-89.

Gutierrez MI, Lopez-Haro SA, Vera A, Leija L. Experimental verification of modeled thermal distribution produced by a piston source in physiotherapy ultrasound. Biomed Res Int 2016;2016:5484735. doi: 10.1155/2016/5484735.

Marks R, Ghanagaraja S, Ghassemi M. Ultrasound for osteo-arthritis of the knee: a systematic review. Physiotherapy 2000;86(9):452-63. doi: 10.1016/s0031-9406(05)60807-3.

Ke MJ, Chen LC, Chou YC, Li TY, Chu HY, Tsai CK, et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial. Sci Rep 2016;6:38344. doi: 10.1038/srep38344.

van der Worp H, van den Akker-Scheek I, van Schie H, Zwerver J. ESWT for tendinopathy: technology and clinical implications. Knee Surg Sports Traumatol Arthrosc 2013;21(6):1451-8. doi: 10.1007/s00167-012-2009-3.

Signori LU, Costa ST, Neto AF, Pizzolotto RM, Beck C, Sbruzzi G, et al. Haematological effect of pulsed ultrasound in acute muscular inflammation in rats. Physiotherapy 2011;97(2):163-9. doi: 10.1016/j.physio.2010.06.004.

Demchak TJ, Stone MB. Effectiveness of clinical ultrasound parameters on changing intramuscular temperature. J Sport Rehabil 2008;17(3):220-9. doi: 10.1123/jsr.17.3.220.

Grey K. Distribution of treatment time in physiotherapeutic application of ultrasound. Physiotherapy 2003;89(12):696-707. doi: 10.1016/S0031-9406(05)60492-0.

Warden SJ, McMeeken JM. Ultrasound usage and dosage in sports physio­therapy. Ultrasound Med Biol 2002;28(8):1075-80. doi: 10.1016/S0301-5629(02)00552-5.

Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys Ther 2001;81(7):1351-8.

Speed CA. Therapeutic ultrasound in soft tissue lesions. Rheumatology (Oxford) 2001;40(12):1331-6.

ter Haar G. Therapeutic ultrasound. Eur J Ultrasound 1999;9(1):3-9. doi: 10.1016/S0929-8266(99)00013-0.

Lubkowska A, Dobek A. Clinical application of radial and focused shock wave therapy in painful shoulder syndrome. Fizjoter Pol 2013;13(1):36-43.

Lubkowska A, Dobek A, Garczyński W, Andryszczyk M, Rotter I. Evaluation of the functional status of patients with a diagnosis of painful shoulder before and after a series of 3 radial shock wave treatment. J Health Sci 2014;4(4):89-101.

Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res 2016;16:25-33. doi: 10.1016/j.artres.2016.09.001.

Trafidło T, Gaszyński T, Gaszyński W, Nowakowska-Domagała K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study. Int J Surg 2015;16(Pt A):23-30. doi: 10.1016/j.ijsu.2015.02.009.

Casati A, Spreafico E, Putzu M, Fanelli G. New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anestesiol 2006;72(7-8):605-25.

Figoni SF, Kunkel CF, Scremin AM, Asher A, Banks NL, Rivera A, et al. Effects of exercise training on calf tissue oxygenation in men with claudication. PM R 2009;1(10): 932-40. doi: 10.1016/j.pmrj.2009.08.453.

Manfredini F, Lamberti N, Malagoni AM, Zambon C, Basaglia N, Mascoli F, et al. Reliability of the vascular claudication reporting in diabetic patients with peripheral arterial disease: a study with near-infrared spectroscopy. Angiology 2015;66(44):365-74. doi: 10.1177/0003319714534762.

Southern WM, Ryan TE, Kepple K, Murrow JR, Nilsson KR, McCully KK. Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep 2015;3(4):pii:e12353. doi: 10.14814/phy2.12353.

Nazer B, Ghahghaie F, Kashima R, Khokhlova T, Perez C, Crum L, et al. Therapeutic ultrasound promotes reperfusion and angiogenesis in a rat model of peripheral arterial disease. Circ J 2015;79(9):2043-9. doi: 10.1253/circj.CJ-15-0366.

Krosny T, Dąbek P, Staszkewicz W, Lewszuk A. Assessment of perfusion abnormalities in patients with p.o.d. using NIRS (near infrared spectroscopy). Post Nauk Med 2012;8(15):628-35.

Fowkes FG, Housley E, Cawood EH, Macintyre CC, Ruckley CV, Prescott RJ. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int J Epidemiol 1991;20(2):384-92.

Hagblad J, Lindberg LG, Kaisdotter Andersson A, Bergstrand S, Lindgren M, Ek AC, et al. A technique based on laser Doppler flowmetry and photoplethysmography for simultaneously monitoring blood flow at different tissue depths. Med Biol Eng Comput 2010;48(5):415-22. doi: 10.1007/s11517-010-0577-2.

Lenasi H, Potočnik N, Petrishchev N, Papp M, Egorkina A, Girina M, et al. The measurement of cutaneous blood flow in healthy volunteers subjected to physical exercise with ultrasound Doppler imaging and laser Doppler flowmetry. Clin Hemorheol Microcirc 2017;65(4):373-81. doi: 10.3233/CH-16204.

Celie BM, Boone J, Dumortier J, Derave W, De Backer T, Bourgois JG. Possible influences on the interpretation of Functional Domain (FD) Near­‍-Infrared Spectroscopy (NIRS): an explorative study. Appl Spectrosc 2016;70(2):363-71. doi: 10.1177/0003702815620562.

Boushel R, Piantadosi C. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 2000;168(4):615-22. doi: 10.1046/j.1365-201x.2000.00713.x.

Cuisset T, Quilici J, Pankert M, Fourcade L, Poyet R, Lambert M, et al. Usefulness of index of microcirculatory resistance to detect microvascular dysfunction as a potential mechanism of stress-induced cardiomyopathy (Tako-tsubo syndrome). Int J Cardiol 2011;153(3):e51-3. doi: 10.1016/j.ijcard.2011.02.028.

Palanca AA, Yang A, Bishop JA. The effects of limb elevation on muscle oxygen saturation: a near-infrared spectroscopy study in humans. PM R 2016;8(3):221-4. doi: 10.1016/j.pmrj.2015.07.015.

Malliaropoulos N, Jury R, Pyne D, Padhiar N, Turner J, Korakakis V, et al. Radial extracorporeal shockwave therapy for the treatment of finger tenosynovitis (trigger digit). Open Access J Sports Med 2016;7:143-51. doi: 10.2147/OAJSM.S108126.

Notarnicola A, Moretti L, Tafuri S, Forcignanò M, Pesce V, Moretti B. Reduced local perfusion after shock wave treatment of rotator cuff tendinopathy. Ultrasound Med Biol 2011;37(3):417-25. doi: 10.1016/j.ultrasmedbio.2010.11.019.

Draper DO, Sunderland S, Kirkendall DT, Ricard M. A comparison of temperature rise in human calf muscle following applications of underwater and topical gel ultrasound. J Orthop Sports Phys Ther 1993;17(5):247-51. doi: 10.2519/jospt.1993.17.5.247.

Lehmann JF, McMillan JA, Brunner GD, Blumberg JB. Comparative study of the efficiency of short-wave, microwave and ultrasonic diathermy in heating the hip joint. Arch Phys Med Rehabil 1959;40:510-2.

ter Haar G, Hopewell JW. Ultrasonic heating of mammalian tissues in vivo. Br J Cancer 1982;45(Suppl V):65-7.

Lehmann JF, de Lateur BJ. Therapeutic heat. In: Lehmann JF, editor Therapeutic heat and cold. Baltimore: Williams & Wilkins; 1990. p. 417-581.

Johns LD, Colloton P, Neuenfeldt J, Krupo K. Pre-exposure effects of 1 and 3 MHz therapeutic ultrasound on ConA activated spleenocytes. Cytokine 2003;22(3-4):55-61.

van der Windt DA, van der Heijden GJ, van den Berg SG, ter Riet G, de Winter AF, Bouter LM. Ultrasound therapy for musculoskeletal disorders: a systematic review. Pain 1999;81(3):257-71.

Dyson M. Mechanisms involved in therapeutic ultrasound. Physiotherapy 1987;73(3):116-20.

Császár NB, Angstman NB, Milz S, Sprecher CM, Kobel P, Farhat M, et al. Radial shock wave devices generate cavitation. PLoS One 2015;10(10):e0140541. doi: 10.1371/journal.pone.0140541.




DOI: https://doi.org/10.21164/pomjlifesci.443

Copyright (c) 2018

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/