Rola microRNA w różnicowaniu mięśni szkieletowych

Joanna Bujak, Patrycja Kopytko, Kamila Rydzewska, Marta Tkacz, Maciej Tarnowski

Abstrakt


Miogeneza jest skomplikowanym i wieloetapowym procesem rozpoczynającym się w życiu płodowym. Rozwój mięśni szkieletowych regulowany jest przez liczne czynniki oraz ścieżki sygnalizacyjne, które mogą być kontrolowane przez microRNA. MicroRNA to krótkie, niekodujące odcinki RNA pochodzenia endogennego, o długości 21–25 nukleotydów. MicroRNA odgrywają istotną rolę w mechanizmach potranskrypcyjnej regulacji ekspresji genów poprzez wiązanie z komplementarnym mRNA, powodując jego degradację lub inhibicję translacji białka. Wykryto, iż niektóre miRNA występują jedynie w tkance mięśniowej, odgrywając szczególnie ważną rolę w procesie różnicowania komórek mięśniowych. Do grupy mięśniowo specyficznych miRNA (myomiRs) zalicza się: miR-1, miR-27b, miR-133, miR-195, miR-199, miR-206, miR-499. Stan podniesionego stężenia mięśniowo charakterystycznych microRNA jest typowy dla późnego stadium różnicowania komórek mięśniowych, a ich ilość jest wprost proporcjonalna do zdolności różnicowania się mioblastów w miotubule. Dysregulacja stężenia myomiRs może prowadzić do rozwoju chorób mięśni szkieletowych, w tym: mięsaka prążkowanokomórkowego, dystrofii mięśniowej Duchenne’a, stwardnienia zanikowego bocznego.

Słowa kluczowe


miogeneza; rozwój komórek mięśniowych; myomiRs

Pełny tekst:

PDF

Bibliografia


Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, et al. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis 2014;5(7):e134

Grabiec K, Milewska M, Grzelkowska-Kowalczyk K.

Matczyna otyłość a rozwój mięśni szkieletowych u potomstwa – płodowe pochodzenie zaburzeń metabolicznych. Postępy Hig Med Dośw 2012;66:1-10.

Bartel H. Embriologia. Warszawa: Wydawnictwo Lekarskie PZWL; 2001. p. 101-427.

Przewoźniak M, Brzóska E. Białka PAX w różnicowaniu komórek i organogenezie. Post Biol Komórki 2008;35(2):229-42.

Archacka K, Kowalski K, Brzóska E. Czy komórki satelitowe są macierzyste? Post Bioch 2013;59(2):205-18.

Milewska M, Grabiec K, Grzelkowska-Kowalczyk K. Interakcje szlaków sygnałowych proliferacji i różnicowania w miogenezie. Postępy Hig Med Dośw 2014;68:516-26.

McCormick R, Pearson T, Vasilaki A. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis. Redox Biol 2016;8:243-51.

Czerwińska AM, Ciemerych MA. Kule zarodkowe jako metoda różnicowania pluripotencjalnych komórek macierzystych w mioblasty. Post Biol Komórki 2012;39(4):669-84.

Ławniczak A, Kmieć Z. Zmiany mięśni szkieletowych w trakcie starzenia: fizjologia, patologia i regeneracja. Postępy Hig Med Dośw 2012;66:392-400.

Wahida F, Shehzada A, Khanb T, Kima YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 2010;1803(11):1231-43. doi: 10.1016/j.bbamcr.2010.06.013.

Honardoost M, Soleimani M, Arefian E, Sarookhani MM. Expression change of miR-214 and miR-133 during muscle differentiation. Cell J 2015;17(3):461-70.

Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008;105(36):13556-61. doi: 10.1073/pnas.0803055105.

Leoni G, Tramontano A. A structural view of microRNA-target recognition. Nucleic Acids Rec 2016;44(9):e82.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97.

Sun X, Guo W, Shen JK, Mankin HJ, Hornicek F, Duan Z. Rhabdomyosarcoma: advances in molecular and cellular biology. Sarcoma 2015;2015:232010.

Goljanek-Whysall K, Sweetman D. MicroRNAs in skeletal muscle differentiation and disease. Clin Sci 2012;123:611-25.

Koutalianos D, Koutsoulidou A, Mastroyiannopoulos MP, Furling D, Phylactou LA. MyoD transcription factor induces myogenesis by inhibiting Twist-1 through miR-206. J Cell Sci 2015;128,3631-45.

Jia X, Lin H, Abdalla BA, Nie Q. Characterization of miR-206 promoter and its association with birthweight in chicken. Int J Mol Sci 2016;17(4):559.

Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B, et al. MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci 2015;11(3):345-52.

Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006;174(5):677-87.

Luo Y, Wu X, Ling Z, Yuan L, Cheng Y, Chen J, et al. microRNA133a targets Foxl2 and promotes differentiation of C2C12 into myogenic progenitor cells. DNA Cell Biol 2015;34(1):29-36.

Huang Q-K, Qiao H-Y, Fu M-H, Li G, Li W-B, Chen Z, et al. MiR-206 attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-β1, Smad3, and HDAC4 signaling. Med Sci Monit 2016;22:1161-70. doi: 10.12659/MSM.897909.

Chen J-F, Tao Y, Li J, Deng Z, Yan Z, Xiao X, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 2010;190(5):867-79.

Winbanks CE, Wang B, Beyer C, Koh P, White L, Kantharidis P, et al. TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem 2011;286(16):13805-14.

Pellegrini L. The Pol α-primase complex. Subcell Biochem 2012;62:157-69.

Buckingham M, Rigby PW. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 2014;28(3):225-38.

Lozano-Velasco E, Galiano-Torres J, Jodar-Garcia A, Aranega AE, Franco D. miR-27 and miR-125 distinctly regulate muscle-enriched transcription factors in cardiac and skeletal myocytes. BioMed Res Int 2015;2015:391306. doi: 10.1155/2015/391306.

Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Nat Acad Sci U S A 2009;106(32):13383-7.

Gagan J, Dey BK, Dutta A. MicroRNAs regulate and provide robustness to the myogenic transcriptional network. Curr Opin Pharmacol 2012;12(3):383-8.

Miretti S, Martignani E, Accornero P, Baratta M.

Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC Genomics 2013;14:194.

Minetti GC, Feige JN, Bombard F, Heier A, Morvan F, Nürnberg B, et al. Gαi2 signaling is required for skeletal muscle growth, regeneration, and satellite cell proliferation and differentiation. Mol Cell Biol 2014;34(4):619-30.

Feng Y, Niu L-L, Wei W, Zhang WY, Li XY, Cao JH, et al. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis 2013;4(11):e934.

Wang XH. MicroRNA in myogenesis and muscle atrophy. Curr Opinion Clin Nutrition Metabolic Care 2013;16(3):258-66.

Huang MB, Xu H, Xie SJ, Zhou H, Qu LH. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE 2011;6(12):e29173. doi: 10.1371/journal.pone.0029173.

Frias Fde T, de Mendonça M, Martins AR, Gindro AF, Cogliati B, Curi R, et al. MyomiRs as markers of insulin resistance and decreased myogenesis in skeletal muscle of diet-induced obese mice. Frontiers Endocrinol 2016;7:76.

Martin B, Pearson M, Kebejian L, Golden E, Keselman A, Carlson O, et al. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology 2007;148(9):4318-33.

Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained noncoding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010;29(18):3082-93. doi: 10.1038/emboj.2010.199.

Han X, Yang F, Cao H, Liang Z. Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 2015;29(7):3054-64.

Duran BO, Fernandez GJ, Mareco EA, Moraes LN, Salomão RA, Gutierrez de Paula T, et al. Differential microRNA expression in fast- and slow-twitch skeletal muscle of Piaractus mesopotamicus during growth. PLoS ONE 2015;10(11):e0141967. doi:10.1371/journal.pone.0141967.

Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. The miR-15 family regulates post-natal mitotic arrest of cardiomyocytes. Circ Res 2011;109(6):670-9.

Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiol Genomics 2014;46(20):747-65.

Sato T, Yamamoto T, Sehara-Fujisawa A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 2014;5:4597. doi:10.1038/ncomms5597.

Wei W, Zhang WY, Bai JB, Zhang HX, Zhao YY, Li XY, et al. The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes. J Cell Sci 2016;129(1):39-50.

Hashemi Gheinani A, Burkhard FC, Rehrauer H, Aquino Fournier C, Monastyrskaya K. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J Biol Chem 2015;290(11):7067-86. doi: 10.1074/jbc.M114.618694.

Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, et al. MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. J Cell Physiol 2010;225(2):437-43.

Jia L, Li Y-F, Wu G-F, Song Z-Y, Lu HL, Song C-C, et al. MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci 2014;15(1):296-308. doi:10.3390/ijms15010296.

Chen T, Margariti A, Kelaini S, Cochrane A, Guha ST, Hu Y, et al. MicroRNA‐199b modulates vascular cell fate during iPS cell differentiation by targeting the Notch Ligand Jagged1 and Enhancing VEGF signaling. Stem Cells 2015;33(5):1405-18.

Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013;130(9-10):447-57.

Van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17(5):662-73.

Wang X, Ono Y, Tan SC, Chai RJ, Parkin C, Ingham PW. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 2011;138(20):4399-404.

Nachtigall PG, Dias MC, Carvalho RF, Martins C, Pinhal D. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in nile tilapia. PLoS ONE 2015;10(3):e0119804. doi: 10.1371/journal.pone.0119804.

Tarnowski M, Grymuła K, Tkacz M, Czerewaty M, Poniewierska-Baran A, Ratajczak MZ. Molekularne mechanizmy regulacji przerzutowania komórek nowotworowych na przykładzie mięsaka prążkowanokomórkowego (rhabdomyosarcoma). Postępy Hig Med Dośw 2014;68:258-7.

Raimondi L, Ciarapica R, De Salvo M, Verginelli F, Gueguen M, Martini C, et al. Inhibition of Notch3 signalling induces rhabdomyosarcoma cell differentiation promoting p38 phosphorylation and p21Cip1 expression and hampers tumour cell growth in vitro and in vivo. Cell Death Differ 2012;19(5):871-81.

Rao PK, Missiaglia E, Shields L, Hyde G, Yuan B, Shepherd CJ, et al. Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J 2010;24(9):3427-37. doi: 10.1096/fj.09-150698.

Kostera-Pruszczyk A. Glikokortykoidy w leczeniu dystrofii mięśniowej Duchenne’a – standard postępowania. Neurol Dziec 2011;40(20):11-4.

Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, et al. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 2006;119(Pt 9):1824-32.

Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J 2009;23(10):3335-46.

Quaranta MT, Spinello I, Paolillo R, Macchia G, Boe A, Ceccarini M, et al. Identification of β-dystrobrevin as a direct target of miR-143: involvement in early stages of neural differentiation. PLoS ONE 2016;11(5):e0156325.

Kubiszewska J, Kwieciński H. Stwardnienie boczne zanikowe. Post Nauk Med 2010;6:440-8.

Tsitkanou S, Della Gatta PA, Russell AP. Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS. Front Physiol 2016;7:403. doi: 10.3389/fphys.2016.00403.

de Andrade HM, de Albuquerque M, Avansini SH, de S Rocha C, Dogini DB, Nucci A, et al. MicroRNAs-424 and 206 are potential prognostic markers in spinal onset amyotrophic lateral sclerosis. J Neurol Sci 2016;368; 19-24.

Sjögren RJO, Egan B, Katayama M, Zierath JR, Krook A. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells. Physiol Genomics 2015;47(3):45-57.




DOI: http://dx.doi.org/10.21164/pomjlifesci.345

Copyright (c) 2017 Joanna Bujak, Patrycja Kopytko, Kamila Rydzewska, Marta Tkacz, Maciej Tarnowski

URL licencji: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/