The assessment of serum levels of selected hormones and morphological, histochemical and immunohistochemical evaluation of the prostate gland in men with benign prostatic hyperplasia and with coexisting metabolic syndrome

Aleksandra Rył

Abstract


Introduction: Benign prostatic hyperplasia (BPH) is one of the most common diseases occurring in aging men. The relationship between BPH and metabolic syndrome (MetS) has been poorly elucidated. Evidence was also provided for the relationship between disorders diagnosed in the course of MetS, the volume of the prostate. Metabolic syndrome may play a part in BPH progression.

The aim of this study was to assess the influence of the levels of selected hormones, and to make a morphological, histochemical, and immunohistochemical evaluation of the prostate in men with BPH and coexisting MetS.

Materials and methods: The study involved 151 men with diagnosed and surgically treated BPH. The control group consisted of 142 men without BPH. The men in the study and control groups were divided into subgroups: without MetS diagnosis and with MetS diagnosis. In both groups, anthropometric parameters were measured, and metabolic parameters and the levels of selected hormones and proteins – total testosterone, free testosterone, estradiol, insulin, dehydroepiandrosterone sulfate, luteinizing hormone, sex hormone binding protein and insulin-like growth factor-1 – in serum were determined. An immunohistochemical reaction was performed on the sections to identify an 

androgen receptor (AR) and an oestrogen receptor α (ERα), as well as a proliferating cell nuclear antigen (PCNA). Additionally, a histochemical reaction for apoptosis was performed using the TUNEL method. The preparations were scanned and subjected to computer image analysis.

Results and conclusions: Our study showed that a disturbed lipid profile in serum and a diagnosis of MetS were factors raising the risk of BPH. Changes in the levels of proteins, as well as metabolic and hormonal parameters, had no effects on the severity of clinical symptoms accompanying benign prostatic hyperplasia. Metabolic syndrome in BPH patients had no influence on the localization and expression of AR and ERα in the prostate cells. Nevertheless, metabolic disorders diagnosed in BPH patients may have an impact on the change in the balance between the number of AR(+) and ERα(+) cells and hormone metabolism parameters. Metabolic syndrome in BPH patients had no influence on the number of TUNEL(+) and PCNA(+) cells in the prostate gland. An important factor decreasing the number of TUNEL(+) cells and increasing the number of PCNA(+) cells in BPH patients was central obesity.


Keywords


benign prostatic hyperplasia; metabolic syndrome; hormones

Full Text:

PDF (Język Polski)

References


Guess HA. Benign prostatic hyperplasia: antecedents and natural history. Epidemiol Rev 1992;14:131-53.

Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol 2006;29(2):305-14.

Smith P, Rhodes NP, Ke Y, Foster CS. Upregulation of estrogen and androgen receptors modulate expression of FGF-2 and FGF-7 in human, cultured, prostatic stromal cells exposed to high concentrations of estradiol. Prostate Cancer Prostatic Dis 2002;5(2):105-10. doi: 10.1038/sj.pcan.4500571.

Słuczanowska-Głabowska S, Laszczyńska M, Głabowski W, Wylot M. Morphology of the epithelial cells and expression of androgen receptor in rat prostate dorsal lobe in experimental hyperprolactinemia. Folia Histochem Cytobiol 2006;44(1):25-30.

Partin AW, Oesterling JE, Epstein JI, Horton R, Walsh PC. Influence of age and endocrine factors on the volume of benign prostatic hyperplasia. J Urol 1991;145(2):405-9.

Montie JE, Pienta KJ. Review of the role of androgenic hormones in the epidemiology of benign prostatic hyperplasia and prostate cancer. Urology 1994;43(6):892-9.

Griffiths K. Molecular control of prostate growth. In: Kirby R, McConnell JD, Fitzpatrick JM, editors. Textbook of benign prostatic hyperplasia. Oxford: Isis Medical Media; 1996. p. 23-6.

Zhang MD, Zhao YN, AnLW. B-cell lymphoma/leukemia-2 and benign prostatic hyperplasia. Zhonghua Nan Ke Xue 2009;15(5):452-4.

Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res 2008;20:11-8. doi: 10.1038/ijir.2008.55.

He Q, Wang H, Yue Z, Yang L, Tian J, Liu G, et al. Waist circumference and risk of lower urinary tract symptoms: a meta-analysis. Aging Male 2014;17(4):223-9. doi: 10.3109/13685538.2014.967671.

Gacci M, Vignozzi L, Sebastianelli A, Salvi M, Giannessi C, De Nunzio C, et al. Metabolic syndrome and lower urinary tract symptoms: the role of inflammation. Prostate Cancer Prostatic Dis 2013;16(1):101-6. doi: 10.1038/pcan.2012.44.

Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet 2005;366:1059-62. doi: 10.1016/S0140-6736(05)67402-8.

WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157-63. doi: 10.1016/S0140-6736(03)15268-3.

Wesołowski P, Wańkowicz Z. Insulin resistance diagnostic methods and clinical outcomes. Nefrol Dial Pol 2011;15:243-6.

Zhang X, Zeng X, Liu Y, Dong L, Zhao X, Qu X. Impact of metabolic syndrome on benign prostatic hyperplasia in elderly Chinese men. Urol Int 2014;93(2):214-9. doi: 10.1159/000357760.

Pashootan P, Ploussard G, Cocaul A, de Gouvello A, Desgrandchamps F. Association between metabolic syndrome and severity of lower urinary tract symptoms: observational study in a 4,666 European men cohort. BJU Int 2015;116(1):124-30. doi: 10.1111/bju.12931.

Fleshner NE, Bhindi B. Metabolic syndrome and diabetes for the urologist. Can Urol Assoc J 2014;8:159-61. doi: 10.5489/cuaj.2314.

Ejike CE, Ezebuiro CO. Cardiometabolic risk factors’ Prevalence in a population of geriatrics with elevated serum prostate specific antigen levels. Continental J Med Res 2011;5(2):6-13.

Burke JP, Rhodes T, Jacobson DJ, McGree ME, Roberts RO, Girman CJ, et al. Association of anthropometric measures with the presence and progression of benign prostatic hyperplasia. Am J Epidemiol 2006;164(1):41-6. doi: 10.1093/aje/kwj151.

Parsons JK. Modifiable risk factors for benign prostatic hyperplasia and lower urinary tract symptoms: New approaches to old problems. J Urol 2007;178(2):395-401. doi: 10.1016/j.juro.2007.03.103.

Kim WT, Yun SJ, Choi YD, Kim GY, Moon SK, Choi YJ, et al. Prostate size correlates with fasting blood glucose in non-diabetic benign prostatic hyperplasia patients with normal testosterone levels. J Korean Med Sci 2011;26(9):1214-8. doi: 10.3346/jkms.2011.26.9.1214.

Hammarsten J, Damber JE, Karlsson M, Knutson T, Ljunggren O, Ohlsson C, et al. Insulin and free oestradiol are independent risk factors for benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2009;12(2):160-5. doi: 10.1038/pcan.2008.50.

Nandeesha H, Koner BC, Dorairajan LN, Sen SK. Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia. Clin Chim Acta 2006;370(1-2):89-93. doi: 10.1016/j.cca.2006.01.019.

Vikram A, Jena G, Ramarao P. Insulin-resistance and benign prostatic hyperplasia: the connection. Eur J Pharmacol 2010;641(2-3):75-81. doi: 10.1016/j.ejphar.2010.05.042.

Ploumidou K, Kyroudi-Voulgari A, Perea D, Anastasiou I, Mitropoulos D. Effect of a hypercholesterolemic diet on serum lipid profile, plasma sex steroid levels, and prostate structure in rats. Urology 2010;76(6):1517. doi: 10.1016/j.urology.2010.07.515.

Rahman NU, Phonsombat S, Bochinski D, Carrion RE, Nunes L, Lue TF. An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 2007;100(3):658-63. doi: 10.1111/j.1464-410X.2007.07069.x.

Freeman MR, Solomon KR. Cholesterol and benign prostate disease. Differentiation 2011;82(4-5):244-52. doi: 10.1016/j.diff.2011.04.005.

Rabijewski M. Patogeneza i objawy zespołu niedoboru testosteronu. Prz Urol 2008;9:20-6.

Kaplan SA, Lee JY, O’Neill EA, Meehan AG, Kusek JW. Prevalence of low testosterone and its relationship to body mass index in older men with lower urinary tract symptoms associated with benign prostatic hyperplasia. Aging Male 2013;16(4):169-72. doi: 10.3109/13685538.2013.844786.

Antunes AA, Araújo LH, Nakano E, Muracca E, Srougi M. Obesity may influence the relationship between sex hormones and lower urinary tract symptoms. Int Braz J Urol 2014;40(2):240-6. doi: 10.1590/S1677-5538.IBJU.2014.02.15.

Belanger A, Candas B, Dupont A, Cusan L, Diamond P, Gomez J, et al. Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-yearold men. J Clin Endocrinol Metab 1994;79(4):1086-90. doi: 10.1210/jcem.79.4.7962278.

Oszukowska E, Słowikowska-Hilczer J, Lipiński M, Kula K. Changes in estradiol and testosterone secretions in man with leydigioma and after removal of the tumour. Urol Pol 2003;56:2.

Bernoulli J, Yatkin E, Konkol Y, Talvitie EM, Santti R, Streng T. Prostatic inflammation and obstructive voiding in the adult Noble rat: impact of the testosterone to estradiol ratio in serum. Prostate 2008;68(12):1296-306. doi: 10.1002/pros.20791.

Tan MO, Karabiyik I, Uygur MC, Diker Y, Erol D. Serum concentrations of sex hormones in men with severe lower urinary tract symptoms and benign prostatic hyperplasia. Int Urol Nephrol 2003;35(3):357-63.

Biolchi V, Silva Neto B, Pianta DB, Koff WJ, Berger M, Brum IS. Androgen receptor GGC polymorphism and testosterone levels associated with high risk of prostate cancer and benign prostatic hyperplasia. Mol Biol Rep 2013;40(3):2749-56. doi: 10.1007/s11033-012-2293-5.

Zhang B, Kwon OJ, Henry G, Malewska A, Wei X, Zhang L, et al. Non-cell-autonomous regulation of prostate epithelial homeostasis by androgen receptor. Mol Cell 2016;63(6):976-89. doi: 10.1016/j.molcel.2016.07.025.

Vignozzi L, Gacci M, Cellai I, Santi R, Corona G, Morelli A, et al. Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation. Prostate 2013;73:789-800. doi: 10.1002/pros.22623.

Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, Risbridger GP. Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J 2008;22(5):1512-20. doi: 10.1096/fj.07-9526com.

Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011;82:184-99. doi: 10.1016/j.diff.2011.04.006.

Chavalmane K, Comeglio P, Morelli A, Filippi S, Fibbi B, Vignozzi L, et al. Sex steroid receptors in male human bladder: expression and biological function. J Sex Med 2010;7:2698-713.

Sebastiano C, Vincenzo F, Tommaso C, Giuseppe S, Marco R, Ivana C, et al. Dietary patterns and prostatic diseases. Front Biosci (Elite Ed) 2012;4:195-204.

Rodriguez-Berriguete G, Fraile B, de Bethencourt FR, Prieto-Folgado A, Bartolome N, Nunez C, et al. Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate. BMC Cancer 2010;10:18. doi: 10.1186/1471-2407-10-18.

Ngo TH, Barnard RJ, Leung PS, Cohen P, Aronson WJ. Insulin-like growth factor I (IGF-I) and IGF binding protein–1 modulate prostate cancer cell growth and apoptosis: possible mediators for the effects of diet and exercise on cancer cell survival. Endocrinology 2003;144(6):2319-24. doi: 10.1210/en.2003-221028.

Zhong W, Peng J, He H, Wu D, Han Z, Bi X, et al. Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia. Clin Invest Med 2008;31(1):8-15.




DOI: https://doi.org/10.21164/pomjlifesci.328

Copyright (c) 2017 Aleksandra Rył

License URL: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/