Rola bioaktywnych lipidów w rozwoju mięsaków u dzieci – przegląd piśmiennictwa

Justyna Rajewska, Elżbieta Gawrych

Abstrakt


Mięsaki tkanek miękkich stanową prawie 7% wszystkich złośliwych nowotworów rozpoznawanych u dzieci i młodzieży. Heterogeniczna grupa guzów rozwijająca się z tkanki mezenchymalnej i neuroektodermalnej charakteryzuje się zarówno podobnymi właściwościami biologicznymi, jak i cechami klinicznymi. Podkreśla się znaczenie lipidów bioaktywnych, ponieważ każda zmiana ich stężenia powoduje zmianę w funkcjonowaniu komórki. Niezmiernie istotny jest wpływ bioaktywnych lipidów na funkcjonowanie komórek nowotworowych.

W prezentowanej pracy przedstawiono rolę wybranych bioaktywnych lipidów w rozwoju mięsaków tkanek miękkich u dzieci na tle światowego piśmiennictwa.


Słowa kluczowe


lipidy bioaktywne; mięsaki; dzieci

Pełny tekst:

PDF

Bibliografia


Miller R.W., Young J.L., Novacowic B.: Childhood cancer. Cancer. 1995, 75 (1 suppl.), 395–405.

Paulino A.C., Okcu M.F.: Rhabdomyosarcoma. Curr Probl Cancer. 2008, 32 (1), 7–34.

De Giovanni C., Landuzzi L., Nicoletti G., Lollini P.L., Nanni P.: Molecular and cellular biology of rhabdomyosarcoma. Future Oncol. 2009, 5 (9), 1449–1475.

Toro J.R., Travis L.B., Wu H.J., Zhu K., Fletcher C.D., Devesa S.S.: Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: An analysis of 26,758 cases. Int J Cancer. 2006, 119 (12), 2922–2930.

Hannun Y.A., Obeid L.M.: Principles of bioactive lipid signaling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008, 9 (2), 139–150.

Hla T.: Physiological and pathological actions of sphingosine­‍-1­‍-phosphate. Semin Cell Dev Biol. 2004, 15 (5), 513–520.

Chalfant C.E., Spiegel S.: Sphingosine­‍-1­‍-phosphatate and ceramide 1­‍-phosphatate: expending roles in cell signaling. J Cell Sci. 2005, 118, 4605–4612.

Hinkovska­‍-Galcheva V., Boxer L.A., Kindzelski A., Hiraoka M., Abe A., Goparju S. et al.: Ceramide­‍-1­‍-phosphatate a mediator of phagocytosis. J Biol Chem. 2005, 280 (28), 26612–26621.

Germinario E., Peron S., Toniolo N., Betto R., Cencetti F., Donati C. et al.: S1P2 receptor promotes mouse skeletal muscle regeneration. J Appl Physiol. 2012, 113 (5), 707–713.

Gangoiti P., Bernacchioni C., Donati C., Cencetti F., Ouro A., Gomez­‍-Munoz A. et al.: Ceramide­‍-1­‍-phosphate stimulates proliferation of C2C12 myoblasts. Biochimie. 2012, 94 (3), 597–607.

Hokin M.R., Hokin L.E.: Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J Biol Chem. 1953, 203 (2), 967–977.

Kihara A., Mitsutake S., Mizutani Y., Igarashi Y.: Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1­‍-phosphate and ceramide­‍-1­‍-phosphate. Prog Lipid Res. 2007, 46 (2), 126–144.

Simons K, Toomre D.: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000, 1 (1), 31–39.

Ramstedt B., Slotte J.P.: Sphingolipids and the formation of sterol­‍-enriched ordered membrane domains. Biochim Biophys Acta. 2006, 1758 (12), 1945–1956.

Linn S.C., Kim H.S., Keane E.M., Andras L.M., Wang E., Merrill A.H.: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001, 29 (6), 831–835.

Okazaki T., Bell R., Hannun Y.: Sphingomyelin turnover induced by vitamin D3 in HL­‍-60 cells. Role in cell differentiation. J Biol Chem. 1989, 264 (32), 19076–19080.

Taha T.A., Argraves K.M., Obeid L.M.: Sphingosine­‍-1­‍-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biphys Acta. 2004, 1682 (1­‍-3), 48–55.

Graler M.H., Bernhardt G., Lipp M.: S1P4 receptor mediates S1P­‍-induced vasoconstriction in normotensive and hypertensive rat lungs. Pulm Circ. 2011, 1 (3), 339–404.

Kluk M.J., Hla T.: Signaling of sphingosine­‍-1­‍-phosphate receptors: receptor specifity versus functional redundancy. Biochim Biophys Acta. 2002 (1­‍-3), 1582, 72–80.

Brinkmann V.Y.: FTY 720: mechanism of action and potential benefit in organ transplantation. Med J. 2004, 45 (6), 991–997.

Kim C.H., Wan W., Rui L., Kucia M., Laughlin M.J.: A novel paradigm in stem cell trafficking: the ratio of peripheral blood sphingosine­‍-1­‍-phosphate (S1P) to bone marrow ceramide­‍-1­‍-phosphate (C1P) regulates mobilization and homing of hematopoietic stem cells. ASH meeting. 2010 Abstract #554.

Lee M.J., Thangada S., Claffey K.P., Ancellin N., Liu C.H., Kluk M. et al.: Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine­‍-1­‍-phosphate. Cell. 1999, 99 (3), 301–312.

Spiegel S., Milstien S.: Sphingosine­‍-1­‍-phosphate: an enigmatic signaling lipid. Nat Rev Mol Cell Biol. 2003, 4 (5), 397–407.

Boudker O., Futerman A.H.: Detection and characterization of ceramide­‍-1­‍-phosphate activity in rat liver plasma membrane. J Biol Chem. 1993, 268 (29), 22150–22155.

Pappo A.S., Shapiro D.N., Crist W.M., Maurer H.M.: Biology and therapy of pediatric rhabdomyosarcoma. J Clin Oncol. 1995, 13 (8), 2123–2139.

Ferrari A., Bisogno G., Macaluso A., Casanova M., D’Angelo P., Pierani P. et al.: Soft­‍-tissue sarcomas in children and adolescents with neurofibromatosis type 1. Cancer. 2007, 109 (7), 1406–1412.

Ruymann F.B., Maddux H.R., Ragab A., Soule L.H., Palmer N., Beltangady M. et al.: Congenital anomalies associated with rhabdomyosarcoma: an autopsy study of 115 cases. A report from The Intergroup Rhabdomyosarcoma Study Committee (representing The Children’s Cancer Study Group, The Pediatric Oncology Group, The United Kingdom Children’s Cancer Study Group, and The Pediatric Intergroup Statistical Center). Med Pediatr Oncol. 1988, 16 (1), 33–39.

Hennekam R.C.: Costello syndrome: an overview. Am J Med Genet. 2003, 117 (1), 42–48.

Tsokos M., Webber B.L., Parham D.M., Wesley R.A., Miser A., Miser J.S. et al.: Rhabdomyosarcoma. A new classification scheme related to prognosis. Arch Pathol Lab Med. 1992, 116 (8), 847–855.

Weiss A.R., Lyden E.R., Anderson J.R., Hawkins D.S., Spunt S.L., Walterhouse D.O. et al.: Histologic and clinical characteristic can guide staging evaluations for children and adolescents with rhabdomyosarcoma: a report from The Children’s Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol. 2013, 31 (26), 3226–3232.

Bisogno G., Compostella A., Ferrari A., Pastore G., Cecchetto G., Garaventa A. et al.: Rhabdomyosarcoma in adolescents: a report from The AIEOP Soft Tissue Sarcoma Commitee. Cancer. 2012, 118 (3), 821–827.

Crist W., Gehan E.A., Ragab A.H., Dickman D.S., Donaldson S.S., Fryer C. et al.: The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol. 1995, 13 (3), 610–630.

Raney R.B., Walterhouse D.O., Meza J.L., Andrassy R.J., Breneman J.C., Crist W.M. et al.: Results of The Intergroup Rhabdomyosarcoma Study Group D9602 protocol, using vincristine and dactinomycin with or without cyclophosphamide and radiation therapy, for newly diagnosed patients with low­‍-risk embryonal rhabdomyosarcoma: a report from The Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2011, 29 (10), 1312–1318.

Schneider G., Bryndza E., Abdel­‍-Latif A., Ratajczak J., Maj M., Tarnowski M. et al.: Bioactive lipids sphingosine­‍-1­‍-phosphate and ceramide­‍-1­‍-phosphate are pro­‍-metastatic factors in human rhabdomyosarcomas cell lines, and their tissue level increases in response to radio/chemotherapy. Mol Cancers Res. 2013, 11 (7), 793–807.

Schneider G., Sellers Z.P., Abdel­‍-Latif A., Morris A.J., Ratajczak M.Z.: Bioactive lipids, LCP and LPA are novel prometastatic factors and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res Published Online First July 2014; DOI: 10.1158/1541­‍-7786. MCR­‍-14­‍-0188.

Akiyama T., Hamazaki S., Monobe Y., Nishimura H., Irei I., Sadahira Y.: Sphingosine 1­‍-phosphate receptor 1 is a useful adjunct for distinguishing vascular neoplasms from morphological mimics. Virchows Arch. 2009, 454 (2), 217–222.

Nofiele J.T., Karshafian R., Furukawa M., Al­‍-Mahrouki A., Giles A., Wong S. et al.: Ultrasound­‍-activated microbubble cancer therapy: ceramide production leading to enhanced radiation effect in vitro. Technol Cancer Res Treat. 2013, 12 (1), 53–60.




DOI: https://doi.org/10.21164/pomjlifesci.309

Copyright (c) 2017 Justyna Rajewska, Elżbieta Gawrych

URL licencji: https://creativecommons.org/licenses/by-nc-nd/3.0/pl/